Type I and III interferons (IFN-I/λ) are important antiviral mediators against SARS-CoV-2 infection. Here, we demonstrate that plasmacytoid dendritic cells (pDC) are the predominant IFN-I/λ source following their sensing of SARS-CoV-2-infected cells. Mechanistically, this short-range sensing by pDCs requires sustained integrin-mediated cell adhesion with infected cells. In turn, pDCs restrict viral spread by an IFN-I/λ response directed toward SARS-CoV-2-infected cells. This specialized function enables pDCs to efficiently turn-off viral replication, likely via a local response at the contact site with infected cells. By exploring the pDC response in SARS-CoV-2 patients, we further demonstrate that pDC responsiveness inversely correlates with the severity of the disease. The pDC response is particularly impaired in severe COVID-19 patients. Overall, we propose that pDC activation is essential to control SARS-CoV-2-infection. Failure to develop this response could be important to understand severe cases of COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907212PMC
http://dx.doi.org/10.1038/s41467-023-36140-9DOI Listing

Publication Analysis

Top Keywords

severe covid-19
8
covid-19 patients
8
plasmacytoid dendritic
8
sars-cov-2-infected cells
8
infected cells
8
pdc response
8
cells
5
pdc
5
response
5
patients impaired
4

Similar Publications

Structural and Functional Glycosylation of the Abdala COVID-19 Vaccine.

Glycobiology

January 2025

Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, OX1 3QU, United Kingdom.

Abdala is a COVID-19 vaccine produced in Pichia pastoris and is based on the receptor-binding domain (RBD) of the SARS-CoV-2 spike. Abdala is currently approved for use in multiple countries with clinical trials confirming its safety and efficacy in preventing severe illness and death. Although P.

View Article and Find Full Text PDF

The impact of COVID-19 infection on thyroid function.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Pathology and Forensic Medicine, College of Medicine, University of AlQadisiyah, Iraq.

Extensive research on COVID-19 has revealed a notable link between the disease and thyroid disorders, highlighting complex interactions between thyroid hormones, immunomodulatory signaling molecules within the thyroid gland, and viral infections. This study evaluated the relationship between thyroid function and COVID-19 in Iraqi patients at Adiwaniyah Teaching Hospital. The cohort for this investigation comprised all patients who were admitted to the isolation center at the Teaching Hospital during the timeframe extending from January 2024 to June 2024.

View Article and Find Full Text PDF

Evolution of Omicron lineage towards increased fitness in the upper respiratory tract in the absence of severe lung pathology.

Nat Commun

January 2025

Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.

The emergence of the Omicron lineage represented a major genetic drift in SARS-CoV-2 evolution. This was associated with phenotypic changes including evasion of pre-existing immunity and decreased disease severity. Continuous evolution within the Omicron lineage raised concerns of potential increased transmissibility and/or disease severity.

View Article and Find Full Text PDF

Viral infections of the central nervous system (CNS) have been emerging and re-emerging worldwide, and the Australasia region has not been spared. Enterovirus A71 and enterovirus D68, both human enteroviruses, are likely to replace the soon-to-be eradicated poliovirus to cause global outbreaks associated with neurological disease. Although prevalent elsewhere, the newly emergent orthoflavivirus, Japanese encephalitis virus (genotype IV), caused human infections in Australia in 2021, and almost certainly will continue to do so because of spillovers from the natural animal host-vector life cycle endemic in the country.

View Article and Find Full Text PDF

Post-COVID metabolic enzyme alterations in K18-hACE2 mice exacerbate alcohol-induced liver injury through transcriptional regulation.

Free Radic Biol Med

January 2025

Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea; Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses a significant threat to global public health. Despite reports of liver injury during viral disease, the occurrence and detailed mechanisms underlying the development of secondary exogenous liver injury, particularly in relation to changes in metabolic enzymes, remain to be fully elucidated. Therefore, this study was aimed to investigate the mechanisms underlying SARS-CoV-2-induced molecular alterations in hepatic metabolism and the consequent secondary liver injury resulting from alcohol exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!