Actuators with Gallium Liquid Metal Alloys and Polypyrrole-Coated Electrodes.

ACS Appl Mater Interfaces

Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany.

Published: February 2023

AI Article Synopsis

  • Gallium liquid metal alloys (GLMAs), like Galinstan and EGaIn, have desirable properties such as high surface tension, low viscosity, and good electrical conductivity, making them suitable for use in devices like microfluidic actuators.
  • However, these alloys tend to easily alloy with common electrode materials (gold, platinum, titanium, nickel, and tungsten-titanium), which hampers their practical applications due to issues like corrosion and instability.
  • This study introduces a protective coating made by electrodepositing polypyrrole (PPy) on electrodes, which creates a barrier to prevent alloying and corrosion, demonstrating effective control over GLMAs in liquid metal microfluidics (LMMF) and showcasing a method for

Article Abstract

Gallium liquid metal alloys (GLMAs) such as Galinstan and gallium-indium eutectic (EGaIn) are interesting materials due to their high surface tensions, low viscosities, and electrical conductivities comparable to classical solid metals. They have been used for applications in microelectromechanical systems (MEMS) and, more recently, liquid metal microfluidics (LMMF) for setting up devices like actuators. However, their high tendency to alloy with the most common metals used for electrodes such as gold (Au), platinum (Pt), titanium (Ti), nickel (Ni), and tungsten-titanium (WTi) is a major problem limiting the scaleup and applicability, e.g., liquid metal actuators. Stable electrodes are key elements for many applications and thus, the lack of an electrode material compatible with GLMAs is detrimental for many potential application scenarios. In this work, we study the effect of actuating Galinstan on various solid metal electrodes and present an electrode protection methodology that, first, prevents alloying and, second, prevents electrode corrosion. We demonstrate reproducible actuation of GLMA segments in LMMF, showcasing the stability of the proposed protective coating. We investigated a range of electrode materials including Au, Pt, Ti, Ni, and WTi, all in aqueous environments, and present the resulting corrosion/alloying effects by studying the interface morphology. Our proposed protective coating is based on a simple method to electrodeposit electrically conductive polypyrrole (PPy) on the electrodes to provide a conductive alloying-barrier layer for applications involving direct contact between GLMAs and electrodes. We demonstrate the versatility of this approach by direct three-dimensional (3D) printing of a 500 μm microfluidic chip on a set of electrodes onto which PPy is electrodeposited for actuation of Galinstan plugs. The developed protection protocol will provide a generic, widely applicable strategy to protect a wide range of electrodes from alloying and corrosion and thus form a key element in future applications of GLMAs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952059PMC
http://dx.doi.org/10.1021/acsami.2c17906DOI Listing

Publication Analysis

Top Keywords

liquid metal
16
gallium liquid
8
metal alloys
8
electrodes
8
proposed protective
8
protective coating
8
metal
5
actuators gallium
4
liquid
4
alloys polypyrrole-coated
4

Similar Publications

Structural insight into sodium ion pathway in the bacterial flagellar stator from marine .

Proc Natl Acad Sci U S A

January 2025

Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan.

Many bacteria swim in liquid or swarm on surface using the flagellum rotated by a motor driven by specific ion flow. The motor consists of the rotor and stator, and the stator converts the energy of ion flow to mechanical rotation. However, the ion pathway and the mechanism of stator rotation coupled with specific ion flow are still obscure.

View Article and Find Full Text PDF

Separation of Highly Pure Semiconducting Single-Wall Carbon Nanotubes in Alkane Solvents via Double Liquid-Phase Extraction.

Nanomaterials (Basel)

December 2024

Department of Chemistry, University of Sherbrooke, 2500, Blvd de l'Université, Sherbrooke, QC J1K 2R1, Canada.

This study delves into the distinctive selective property exhibited by a non-conjugated cholesterol-based polymer, poly(CEM--EHA), in sorting semiconducting single-walled carbon nanotubes (s-SWCNTs) within isooctane. Comprised of 11 repeating units of cholesteryloxycarbonyl-2-hydroxy methacrylate (CEM) and 7 repeating units of 2-ethylhexyl acrylate (EHA), this non-conjugated polymer demonstrates robust supramolecular interactions across the sp surface structure of carbon nanotubes and graphene. When coupled with the Double Liquid-Phase Extraction (DLPE) technology, the polymer effectively segregates s-SWCNTs into the isooctane phase (nonpolar) while excluding metallic SWCNTs (m-SWCNTs) in the water phase (polar).

View Article and Find Full Text PDF

Conductive eutectogels have emerged as candidates for constructing functional flexible electronics as they are free from the constraints posed by inherent defects associated with solvents and feeble network structures. Nevertheless, developing a facile, environmentally friendly, and rapid polymerization strategy for the construction of conductive eutectogels with integrated multifunctionality is still immensely challenging. Herein, a conductive eutectogel is fabricated through a one-step dialdehyde xylan (DAX)/liquid metal (LM)-initiated polymerization of a deep eutectic solvent.

View Article and Find Full Text PDF

Technology-critical elements (TCEs) refer to the elements that play an important role in many emerging technologies and the production of advanced materials, and these include lanthanides, tungsten and vanadium. Actinides, Tl, and Pb, which also belong to TCEs, are abundantly used in power generation, industrial applications, and modern agricultural practices. The information on the influence of these elements on the aquatic environment and biota is still rather scarce.

View Article and Find Full Text PDF

Transition-metal nitrides (TMNs) have garnered considerable attention for energy conversion applications owing to their exceptional electronic structures and high catalytic activities. However, the scarcity of active sites in TMNs impedes their large-scale application. This study describes the use of wetness impregnation and ionic-liquid methods to enhance the electrocatalytic efficiency of molybdenum nitride (MoN) atomic clusters finely dispersed on nitrogen-doped carbon (MoN@NC) substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!