Phosphorus recovery from water and the subsequent reuse of its products can solve both water eutrophication and phosphorus resource waste issues. However, the potential use of the final recovered products as crop phosphorus fertilizers and the transformation of phosphorus fractions in soils have rarely been analyzed. In this study, the effects of a phosphorus recovery product (w-HC/CSH/P) obtained from our previous phosphorus recovery study on pepper growth were investigated. The association between soil phosphorus fraction transformation and the microbial co-occurrence network was investigated using high-throughput sequencing. The results showed that amendment with w-HC/CSH/P could promote the growth and chlorophyll content of pepper, which exhibited high phosphorus fertilizer efficiency. In addition, applying w-HC/CSH/P in soils could increase the microbial alpha-diversity during pepper cultivation and induce changes in the microbial community, leading to an increase in the relative abundance of Povalibacter, Lysobacter, and GP10 and a decrease in GP17. The proportion of Resin-P and NaHCO-P decreased, whereas that of NaOH-P increased during pepper cultivation. psOTU331 (g_Latescibacteria), psOTU377 (g_Lysobacter), and psOTU461 (g_Pseudoxanthomonas) were the key microorganisms driving the transformation of phosphorus fractionation in the microbial co-occurrence network. Latescibacteria and Lysobacter were closely correlated with the transformation of NaHCO-P to NaOH-P, and Pseudoxanthomonas was significantly correlated with a decrease in Resin-P. These observations highlight the potential of phosphorus recovery products as fertilizer for pepper and provide new insights into the transformation of phosphorus fractions corresponding to the microbiome in soils.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.162081DOI Listing

Publication Analysis

Top Keywords

phosphorus recovery
20
co-occurrence network
12
phosphorus
12
transformation phosphorus
12
microorganisms driving
8
driving transformation
8
recovery product
8
phosphorus fractions
8
microbial co-occurrence
8
pepper cultivation
8

Similar Publications

Recovery in soil carbon stocks but reduced carbon stabilization after near-natural restoration in degraded alpine meadows.

Sci Rep

December 2024

Grassland Technique Extension Station of Gansu Province, Lanzhou, 730000, Gansu, China.

Near-natural restoration is acknowledged as an effective strategy for enhancing soil organic carbon (SOC) sequestration in degraded grasslands. However, the alterations in SOC fractions, stability, and relative sequestration capacity after restoration of degraded alpine meadows remain uncertain. In this study, we utilized the degraded alpine meadows on the northeastern edge of the Tibetan Plateau as a research area, with grazing as the control (CK) and restoration of 20 years of banned grazing (BG) and growing season resting grazing (RG).

View Article and Find Full Text PDF

Secondary Transport Mechanisms in Amino Acid Fed Enhanced Biological Phosphorus Removal.

Chemosphere

December 2024

Gerald May Department of Civil, Construction, and Environmental Engineering, The University of New Mexico, Albuquerque, New Mexico, 87131, United States. Electronic address:

Enhanced biological phosphorus removal (EBPR) water resource recovery facilities (WRRFs) often fail to meet phosphorus discharge permit limits, indicating a need to improve EBPR to reduce environmental phosphorus discharges. EBPR designs are largely based on the Accumulibacter polyphosphate accumulating organism (PAO) metabolism, while understudied Tetrasphaera PAOs are equally important to EBPR in many facilities worldwide. Anaerobic organic carbon competition is believed to be a key driver of EBPR reliability.

View Article and Find Full Text PDF

Legacy effects of an invasive legume more strongly impact bacterial than plant communities in a Mediterranean-type ecosystem.

J Environ Manage

December 2024

Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland, 7602, South Africa; School of Natural Sciences, Macquarie University, Sydney, 2109, Australia.

The impacts of invasive plants on ecosystem processes and functions may persist as "legacy effects" after their removal. Understanding these effects on native plant-soil interactions is critical for guiding ecological restoration efforts. This study examines the legacy effects of the invasive legume Acacia saligna (Labill.

View Article and Find Full Text PDF

Background Given the increasing incidence and severity of knee osteoarthritis (OA), it is crucial to investigate and refine therapeutic approaches. Aim The objective of this study is to evaluate the effectiveness and potential synergistic effects of proprioceptive exercises combined with Mulligan traction straight leg raise (MT-SLR) in treating OA. This includes improving symptoms such as functional mobility, pain reduction, and relevant serological markers, highlighting the potential of this approach to enhance overall patient outcomes.

View Article and Find Full Text PDF

Halogenated organic pollutants (HOPs) have attracted considerable attention owing to their persistence, bioaccumulation, and toxicity. The development of methods to detect HOPs in fish is challenging owing to the compositional complexity of fish matrices, which contain high levels of lipids and relatively low concentrations of HOPs. In addition, the lipophilicity of most HOPs renders their extraction difficult.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!