Botulinum neurotoxin A1 (BoNT/A1) is the most potent natural poison in human. BoNT/A1 recognize the luminal domain of SV2A (LD-SV2A) and its glycosylation at position N573 (N573g) or the luminal domain of SV2C (LD-SV2C) and its glycosylation at position N559 (N559g) to bind neural membrane. Our computational data suggest that the N-glycan at position 480 (N480g) in the luminal domain of SV2C (LD-SV2C) indirectly enhanced the contacts of the neurotoxin surface with the second N-glycan at position 559 (N559g) by acting as a shield to prevent N559g to interact with residues of LD-SV2C. The absence of an N-glycan homologous to N480g in LD-SV2A leads to a decrease of the binding of N573g to the surface of BoNT/A1. Concerning the intermolecular interactions between BoNT/A and the protein part of LD-SV2A or LD-SV2C, we showed that the high affinity of the neurotoxin for binding LD-SV2C are mediated by a better compaction of its F557-F562 part provided by a π-π network mediated by residues F547, F552, F557 and F562 coupled with the presence of two aromatic residues at position 563 and 564 that optimize the binding of BoNT/A1 via cation-pi and CH-pi interaction. Finally, in addition to the well-known ganglioside binding site which accommodates a ganglioside on the surface of BoNT/A1, we identified a structure we coined the ganglioside binding loop defined by the sequence 1253-HQFNNIAK-1260 that is conserved across all subtypes of BoNT/A and is predicted to has a high affinity to interact with gangliosides. These data solved the puzzle generated by mutational studies that could be only partially understood with crystallographic data that lack both a biologically relevant membrane environment and a full glycosylation of SV2.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2023.110384DOI Listing

Publication Analysis

Top Keywords

luminal domain
12
botulinum neurotoxin
8
glycosylation position
8
domain sv2c
8
sv2c ld-sv2c
8
n-glycan position
8
surface bont/a1
8
high affinity
8
ganglioside binding
8
binding
6

Similar Publications

Liver-specific gene PGRMC1 blocks c-Myc-induced hepatocarcinogenesis through ER stress-independent PERK activation.

Nat Commun

January 2025

The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.

Roles of liver-specific genes (LSGs) in tumor initiation and progression are rarely explored in hepatocellular carcinoma (HCC). Here we show that LSGs are generally downregulated in HCC tumor tissues compared to non-HCC liver tissues, and low-LSG HCCs show poor prognosis and the activated c-Myc pathway. Among the c-Myc- and patient prognosis-associated LSGs, PGRMC1 significantly blocks c-Myc-induced orthotopic HCC formation.

View Article and Find Full Text PDF

Purpose: Breast cancer is a heterogeneous disease. Exploring new prognostic and therapeutic targets in patients with breast cancer is essential. This study investigated the expression of MET, ESR1, and ESR2 genes and their association with clinicopathologic characteristics and clinical outcomes in patients with breast cancer.

View Article and Find Full Text PDF

Targeting signals required for protein sorting to sub-chloroplast compartments.

Plant Cell Rep

December 2024

Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, South Korea.

Chloroplasts, distinctive subcellular organelles found exclusively in plant species, contain three membranes: the outer, inner, and thylakoid membranes. They also have three soluble compartments: the intermembrane space, stroma, and thylakoid lumen. Accordingly, delicate sorting mechanisms are required to ensure proper protein targeting to these sub-chloroplast compartments.

View Article and Find Full Text PDF

Genetic variants in TMEM106B, coding for a transmembrane protein of unknown function, have been identified as critical genetic modulators in various neurodegenerative diseases with a strong effect in patients with frontotemporal degeneration. The luminal domain of TMEM106B can form amyloid-like fibrils upon proteolysis. Whether this luminal domain is generated under physiological conditions and which protease(s) are involved in shedding remain unclear.

View Article and Find Full Text PDF

Photosystem II (PSII) splits water in oxygenic photosynthesis on Earth. The structure and function of the CSM-type PSII-LHCII (light-harvesting complex II) megacomplexes from the wild-type and PsbR-deletion mutant plants are studied through electron microscopy (EM), structural mass spectrometry, and ultrafast fluorescence spectroscopy [time-resolved fluorescence (TRF)]. The cryo-EM structure of a type I CSM megacomplex demonstrates that the three domains of PsbR bind to the stromal side of D1, D2, and CP43; associate with the single transmembrane helix of the redox active Cyt ; and stabilize the luminal extrinsic PsbP, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!