Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
5,7-Dihydroxy-4-methylcoumarin (D4M) is attributed to free radical scavenging effects, with wide application for anti-oxidation. This work aimed to assess D4M's impact on cisplatin-induced ototoxicity. The cell viability was estimated with CCK-8 assay. Apoptosis was detected by the Annexin V-FITC and PI assay. The reactive oxygen species (ROS) level was determined by MitoSOX-Red and CellROX-Green probes. Mitochondrial membrane potential was analyzed with TMRM staining. Immunofluorescence was utilized for hair cells and spiral ganglion neuron detection. Apoptosis-associated proteins were assessed by cleaved caspase-3 and TUNEL staining. These results showed that D4M pretreatment protected hair cells from cisplatin-induced damage, increased cell viability, and decreased apoptosis in House Ear Institute-Organ of Corti1 (HEI-OC1) cells and neonatal mouse cochlear explants. D4M significantly inhibited cisplatin-induced mitochondrial apoptosis and reduced ROS accumulation. In addition, the protective effect of D4M on cisplatin-induced ototoxicity was also confirmed in cochlear hair cells and spiral ganglion neurons in neonatal mice. Mechanistic studies showed that D4M markedly downregulated p-JNK and elevated the expression ratio of p-FoxO1/FoxO1, thereby reducing cisplatin-induced caspase-dependent apoptosis. Meanwhile, D4M-related protection of HEI-OC1 cells was significantly blunted by JNK signaling induction with anisomycin. This study supports the possibility that D4M may be used as a new compound to prevent cisplatin-related hearing loss.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamcr.2023.119437 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!