The APOBEC3 (A3) proteins are host antiviral cellular proteins that hypermutate the viral genome of diverse viral families. In retroviruses, this process requires A3 packaging into viral particles. The lentiviruses encode a protein, Vif, that antagonizes A3 family members by targeting them for degradation. Diversification of A3 allows host escape from Vif whereas adaptations in Vif enable cross-species transmission of primate lentiviruses. How this 'molecular arms race' plays out at the structural level is unknown. Here, we report the cryogenic electron microscopy structure of human APOBEC3G (A3G) bound to HIV-1 Vif, and the hijacked cellular proteins that promote ubiquitin-mediated proteolysis. A small surface explains the molecular arms race, including a cross-species transmission event that led to the birth of HIV-1. Unexpectedly, we find that RNA is a molecular glue for the Vif-A3G interaction, enabling Vif to repress A3G by ubiquitin-dependent and -independent mechanisms. Our results suggest a model in which Vif antagonizes A3G by intercepting it in its most dangerous form for the virus-when bound to RNA and on the pathway to packaging-to prevent viral restriction. By engaging essential surfaces required for restriction, Vif exploits a vulnerability in A3G, suggesting a general mechanism by which RNA binding helps to position key residues necessary for viral antagonism of a host antiviral gene.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033410 | PMC |
http://dx.doi.org/10.1038/s41586-023-05779-1 | DOI Listing |
BMC Health Serv Res
January 2025
School of Public Health, Lanzhou University, Lanzhou, Gansu, China.
Background: China has always been a country with a high burden of tuberculosis. In order to end TB, the Chinese government launched three plans for TB prevention and control. The Chinese government implemented the National 13th Five-Year plan for Tuberculosis Prevention and Control (2016-2020) to promote TB prevention and control from policy, technology, health promotion and other aspects from 2016 to 2020.
View Article and Find Full Text PDFFront Physiol
December 2024
School of Physical Education, Hebei Normal University, Shijiazhuang, Hebei, China.
Objective: To explore the feasibility of post-exercise heart rate recovery indicators for predicting maximum oxygen uptake (VO2max) in healthy adults aged 30-60 years.
Methods: 260 healthy adults who did not perform regular exercise were randomly recruited and divided into a model group (n = 200) and a verification group (n = 60). Measure body fat percentage, weight, height and other indicators, and complete a cardiopulmonary exercise test as required to measure VO2max and heart rate recovery (HRR1, HRR2) in the first and second minutes after exercise.
Behav Sci (Basel)
December 2024
Escuela Profesional de Ingeniería Civil, Facultad de Ingeniería y Arquitectura, Universidad Peruana Unión, Juliaca 21100, Peru.
The leadership literature suggests that a servant leadership style can reduce negative employee outcomes, even in challenging work environments such as the educational sector, where teachers play a key role in social development. This research aimed to evaluate the effect of servant leadership on work happiness and organizational justice. An explanatory study was carried out including 210 men and women who declared that they perform teaching activities, aged between 21 and 68 years (M = 38.
View Article and Find Full Text PDFTo inhibit endocytic entry of some viruses, cells promote acidification of endosomes by expressing the short isoform of human nuclear receptor 7 (NCOA7) which increases activity of vacuolar ATPase (V-ATPase). While we found that HIV-1 infection of primary T cells led to acidification of endosomes, NCOA7 levels were only marginally affected. Contrastingly, levels of the 50 kDa form of the sodium/hydrogen exchanger 6 (NHE6) were greatly reduced.
View Article and Find Full Text PDFMed Phys
January 2025
National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Background: Respiratory motion during radiotherapy (RT) may reduce the therapeutic effect and increase the dose received by organs at risk. This can be addressed by real-time tracking, where respiration motion prediction is currently required to compensate for system latency in RT systems. Notably, for the prediction of future images in image-guided adaptive RT systems, the use of deep learning has been considered.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!