Purpose: To assess the factors associated with continued cooling duration of core temperature (Tcore°) after prolonged outdoor cold-water swimming.

Methods: We designed a cohort study among swimmers participating in an outdoor cold-water swim during qualifying for the English Channel Swim. The day before the event, the participants completed a demographic questionnaire, and body composition was measured using bioelectrical impedance analysis (mBCA 525, Seca). The swimming event consisted of laps over a 1000-m course, for up to 6 hours, in water at 12.5 to 13 °C. Tcore° was measured using an ingestible temperature sensor (e-Celsius, BodyCap) during and up to 1 hour after the swim.

Results: A total of 14 participants (38 [11] y; N = 14, n = 11 males, n = 8 in swimming costume and n = 6 in wetsuit) were included. Before swimming, Tcore° was 37.54 (0.39) °C. The participants swam for an average of 194.00 (101.94) minutes, and mean Tcore° when exiting the water was 35.21 (1.30) °C. The duration of continued cooling was 25 (17) minutes with a minimum Tcore° of 34.66 (1.26) °C. Higher body mass index (r = .595, P = .032) and fat mass (r = .655, P = .015) were associated with longer continued cooling, independent of wetsuit wear. Also, the rate of Tcore° drop during swimming (-1.22 [1.27] °C/h) was negatively correlated with the rate of Tcore° gain after swimming (+1.65 [1.23] °C/h, r = -.682, P = .007).

Conclusion: Increased body mass index and fat mass were associated with Tcore° continued cooling duration after prolonged outdoor cold-water swimming at 12.5 to 13 °C. The rate of Tcore° drop during swimming was negatively correlated with the rate of rewarming.

Download full-text PDF

Source
http://dx.doi.org/10.1123/ijspp.2022-0192DOI Listing

Publication Analysis

Top Keywords

continued cooling
16
outdoor cold-water
12
rate tcore°
12
tcore°
9
factors associated
8
core temperature
8
swimming
8
cold-water swimming
8
cooling duration
8
prolonged outdoor
8

Similar Publications

Emulsion Polymerization of Styrene to Polystyrene Nanoparticles with Self-Emulsifying Nanodroplets as Nucleus.

Langmuir

January 2025

Research Center for Water Resources and Interface Science, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

The mechanism of the emulsion polymerization of styrene to polystyrene nanoparticles (PSNPs) remains a subject of debate. Herein, a series of reaction parameters with different surfactant concentrations, monomer contents, temperatures, and equilibration times were investigated to understand the formation mechanism of PSNPs, which demonstrate a correlation between the properties of PSNPs and the mesostructure of the premix. Cooling the model systems with self-emulsifying nanodroplets (SENDs) in the early reaction stages resulted in the hollow polystyrene spheres (H-PSSs), ruptured PSNPs, and dandelion-like PSNPs, further indicating that the oil nanodroplets are the key sites for the formation of PSNPs.

View Article and Find Full Text PDF

The behavior of triple-cation mixed halide perovskite solar cells (PSCs) under ultrashort laser pulse irradiation at varying fluences is investigated, with a focus on local heating effects observed in femtosecond transient absorption (TA) studies. The carrier cooling time constant is found to increase from 230 fs at 2 µJ cm⁻ to 1.3 ps at 2 mJ cm⁻ while the charge population decay accelerates from tens of nanoseconds to the picosecond range within the same fluence range.

View Article and Find Full Text PDF

In semiconductor inspection equipment, a chuck used to hold a wafer is equipped with a cooling or heating system for temperature uniformity across the surface of the wafer. Surface temperature uniformity is important for increasing semiconductor inspection speed. Triply periodic minimal surfaces (TPMSs) are proposed to enhance temperature uniformity.

View Article and Find Full Text PDF

High-sensitivity, high-speed, broadband mid-infrared photodetector enabled by a van der Waals heterostructure with a vertical transport channel.

Nat Commun

January 2025

School of Physics, Key Laboratory of Quantum Materials and Devices of Ministry of Education, and Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing, China.

The realization of room-temperature-operated, high-performance, miniaturized, low-power-consumption and Complementary Metal-Oxide-Semiconductor (CMOS)-compatible mid-infrared photodetectors is highly desirable for next-generation optoelectronic applications, but has thus far remained an outstanding challenge using conventional materials. Two-dimensional (2D) heterostructures provide an alternative path toward this goal, yet despite continued efforts, their performance has not matched that of low-temperature HgCdTe photodetectors. Here, we push the detectivity and response speed of a 2D heterostructure-based mid-infrared photodetector to be comparable to, and even superior to, commercial cooled HgCdTe photodetectors by utilizing a vertical transport channel (graphene/black phosphorus/molybdenum disulfide/graphene).

View Article and Find Full Text PDF

Anisotropic nanocellulose-based aerogels for radiative cooling.

Int J Biol Macromol

January 2025

College of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, PR China. Electronic address:

To this day, energy conservation, emission reduction, and environmental protection continue to be goals pursued by humanity. Passive radiation cooling, as a zero-consumption refrigeration technology, offers substantial opportunities for reducing global energy consumption and carbon dioxide emissions. It is of great significance to develop high-performance passive radiation cooling materials from sustainable materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!