Purpose: Previous research has shown that maximal oxygen uptake (VO2max) significantly influences performance in trail-running races up to 120 km but not beyond. Similarly, the influence of running economy on performance in ultratrail remains unclear. The aim of our study was, therefore, to determine the physiological predictors of performance in a 166-km trail-running race.
Methods: Thirty-three experienced trail runners visited the laboratory 4 to 8 weeks before the race to undergo physiological testing including an incremental treadmill test and strength assessments. Correlations and regression analyses were used to determine the physiological variables related to performance.
Results: Average finishing time was 37:33 (5:52) hours. Performance correlated significantly with VO2max (r = -.724, P < .001), velocity at VO2max (r = -.813, P < .001), lactate turn point expressed as percentage of VO2max (r = -.510, P = .018), cost of running (r = -.560, P = .008), and body fat percentage (r = .527, P = .012) but was not related to isometric strength. Regression analysis showed that velocity at VO2max predicted 65% of the variability in performance (P < .001), while a model combining VO2max and cost of running combined predicted 62% of the variability (P = .008).
Conclusion: This is the first study to show that VO2max and velocity at VO2max are significant predictors of performance in a 166-km trail-running race. This suggests that ultratrail runners should focus on the development of these 2 qualities to optimize their race performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1123/ijspp.2022-0275 | DOI Listing |
Sports (Basel)
December 2024
Laboratory of Sports Medicine, Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, 57001 Thermi, Greece.
Foods rich in polyphenols have beneficial effects on health. This study aimed to examine the impact of dark chocolate on endurance runners' arterial function. Forty-six male amateur runners, aged 25-55, participated.
View Article and Find Full Text PDFFront Physiol
November 2024
Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
Purpose: This study examined the physiological effects of 12 weeks of detraining and retraining in a highly trained master triathlete (age 53.8 years).
Methods: Variables associated with swimming, cycling, and running performance, including O, peak power output (PPO), gross cycling efficiency (CE), running maximal aerobic velocity (MAV), running economy (RE), muscle strength, and body composition were assessed before the last race of the season (baseline), after 12 weeks of detraining, and after 12 weeks of retraining.
J Sports Sci Med
December 2024
Department of Physical Education, Putian University, Putian, China.
This study compared inter-individual variability in the adaptive responses of cardiorespiratory fitness, anaerobic power, and motor abilities of male volleyball players to high-intensity interval training (HIIT) prescribed as repetitive drop jumps (interval jumping) and running-based intervals (interval running). Twenty-four collegiate volleyball players were equally randomized to two training groups executing 11 minutes of interval running or interval jumping during which they ran or repeated drop-jumps for 15 seconds, alternating with 15 seconds of passive recovery. Before and after the 6-week training period, aerobic fitness, cardiac function, and anaerobic power were evaluated using a graded exercise test, impedance cardiography, and a lower-body Wingate test, respectively.
View Article and Find Full Text PDFJ Biomech
January 2025
Michigan Performance Research Laboratory, School of Kinesiology, University of Michigan, 830 N University Ave, Ann Arbor, MI, 48109, United States.
This study aimed to compare running biomechanics and biomechanical variability across 3 run segments and between conditions for 5-km outdoor overground and indoor treadmill running. Seventy-one recreationally-active adults (31F, 40 M; age: 37 ± 11 years; body mass index: 22.9 ± 2.
View Article and Find Full Text PDFJ Sports Sci
December 2024
Department of Kinesiology, University of Kentucky, Lexington, Kentucky, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!