Purpose: Most high-intensity bouts of exercise in volleyball consist of jumping activities, which are responsible for inducing muscle damage, high levels of fatigue, and muscle soreness. Therefore, the aim of the current study was to quantify and analyze the training loads, neuromuscular fatigue, and perceptual well-being of a 5-week in-season mesocycle carried out by a professional male volleyball team.
Methods: Fifteen volleyball players (age 28.51 [5.39] y; height 193.19 [9.87] cm; body mass 88.46 [13.18] kg) participated in this study. Internal training load assessed through the rating of perceived exertion, external training load (ETL; evaluated using an inertial motion unit), countermovement jump (CMJ) height and peak power, and wellness questionnaire responses were obtained from all athletes.
Results: Results indicated a progressive decrease of the internal training load during the week and by the undulatory pattern of the ETL during the microcycles. Moreover, training monotony increased across the microcycles and was negatively associated with CMJ peak power (r = -.681, P < .05). Finally, sleep quality (ρ = -.747, P < .01) and fatigue (ρ = -.789, P < .01) were negatively associated with weekly ETL.
Conclusions: This study indicated that sleep quality and fatigue were negatively associated with weekly ETL. Therefore, decreases in weekly ETL might be needed to improve sleep quality and decrease fatigue in professional volleyball players. Plus, higher values of training monotony were associated with lower values of CMJ peak power. Consequently, avoiding training monotony might be important to improve jumping performance in professional volleyball athletes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1123/ijspp.2022-0279 | DOI Listing |
Sci Rep
January 2025
CSIRO Mineral Resources, Brisbane, QLD, 4069, Australia.
This paper investigates the impact of treatment with chemical solutions of varying pH values on the micro-macroscopic damage in coal samples under load, employing a combination of Small Angle X-ray Scattering (SAXS) experiments and uniaxial compression tests. The experimental results show that soaking coal samples in NaOH, HCl, and distilled water for 7 days leads to reductions in uniaxial compressive strength by 39.19%, 47.
View Article and Find Full Text PDFSci Rep
January 2025
Ph.D. Program in Global Health & Health Security, College of Public Health, Taipei Medical University, Taipei, Taiwan.
The COVID-19 pandemic may have impacted disabilities among people living with HIV; however, data on the association between COVID-19 pandemic-related healthcare disruptions and disabilities among people living with HIV is limited. We aimed to evaluate the association between COVID-19-affected HIV care behaviors and disability domains among people living with HIV in Belize. A cross-sectional study was conducted at the Western Regional Hospital and Southern Regional Hospital between August and October 2021 among people living with HIV in Belize aged ≥ 21 years and on antiretroviral therapy.
View Article and Find Full Text PDFAcad Radiol
January 2025
Division of Radiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany (F.B., M.G., H.P.S., S.D.); Diagnostic and Interventional Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany (T.F.W., M.W.).
Rationale And Objectives: To establish an advanced automated bone marrow (BM) segmentation model on whole-body (WB-)MRI in monoclonal plasma cell disorders (MPCD), and to demonstrate its robust performance on multicenter datasets with severe myeloma-related pathologies.
Materials And Methods: The study cohort comprised multi-vendor, multi-protocol imaging data acquired with varying field strength across 8 different centers. In total, 210 WB-MRIs of 207 MPCD patients were included.
Environ Res
January 2025
Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055 China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055 China.
Controlling runoff pollution is crucial to improving ecological environments in the context of urbanization and climate change. However, a significant research gap remains in the treatment and reuse of roof runoff, particularly during the first flush. To address this, a novel dry-wet polymorphic constructed wetland (DWP-CW) system was developed to purify first flush runoff efficiently and reliably.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Aerospace Materials and Performance (Ministry of Education) School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191, P. R. China.
A reasonable construction of hollow structures to obtain high-performance absorbers is widely studied, but it is still a challenge to select suitable materials to improve the low-frequency attenuation performance. Here, the FeO@C@NiO nanoprisms with unique tip shapes, asymmetric multi-path hollow cavity, and core-shell heteroepitaxy structure are designed and synthesized based on anisotropy and intrinsic physical characteristics. Impressively, by changing the load of NiO, the composites achieve strong absorption, broadband, low-frequency absorption: the reflection loss of -55.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!