PIKFYVE inhibition mitigates disease in models of diverse forms of ALS.

Cell

Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA. Electronic address:

Published: February 2023

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that results from many diverse genetic causes. Although therapeutics specifically targeting known causal mutations may rescue individual types of ALS, these approaches cannot treat most cases since they have unknown genetic etiology. Thus, there is a pressing need for therapeutic strategies that rescue multiple forms of ALS. Here, we show that pharmacological inhibition of PIKFYVE kinase activates an unconventional protein clearance mechanism involving exocytosis of aggregation-prone proteins. Reducing PIKFYVE activity ameliorates ALS pathology and extends survival of animal models and patient-derived motor neurons representing diverse forms of ALS including C9ORF72, TARDBP, FUS, and sporadic. These findings highlight a potential approach for mitigating ALS pathogenesis that does not require stimulating macroautophagy or the ubiquitin-proteosome system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062012PMC
http://dx.doi.org/10.1016/j.cell.2023.01.005DOI Listing

Publication Analysis

Top Keywords

forms als
12
diverse forms
8
als
7
pikfyve inhibition
4
inhibition mitigates
4
mitigates disease
4
disease models
4
models diverse
4
als amyotrophic
4
amyotrophic lateral
4

Similar Publications

An abnormal expansion of a GGGGCC (GC) hexanucleotide repeat in the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two debilitating neurodegenerative disorders driven in part by gain-of-function mechanisms involving transcribed forms of the repeat expansion. By utilizing a Cas13 variant with reduced collateral effects, we develop here a high-fidelity RNA-targeting CRISPR-based system for C9ORF72-linked ALS/FTD. When delivered to the brain of a transgenic rodent model, this Cas13-based platform curbed the expression of the GC repeat-containing RNA without affecting normal C9ORF72 levels, which in turn decreased the formation of RNA foci, reduced the production of a dipeptide repeat protein, and reversed transcriptional deficits.

View Article and Find Full Text PDF

Aluminum nitride (AlN) with a wide band gap (approximately 6.2 eV) has attractive characteristics, including high thermal conductivity, a high dielectric constant, and good insulating properties, which are suitable for the field of resistive random access memory. AlN thin films were deposited on ITO substrate using the radio-frequency magnetron sputtering technique.

View Article and Find Full Text PDF

Cervical lower motor neuron syndromes: A diagnostic challenge.

J Neurol Sci

January 2025

Veneto Regional Center Motor Neuron Diseases, Department of Neurosciences, University Hospital of Padova, Italy.

Cervical lower motor neuron (LMN) syndromes, also known as brachial paresis, are characterized by muscle atrophy, weakness, and decreased reflexes in the upper limbs, devoid of sensory symptoms. These syndromes can stem from various factors, including degenerative conditions, immune-mediated diseases, infections, toxic exposures, metabolic disorders, and vascular anomalies. Clinical presentations vary, with motor neuron involvement potentially limited to the cervical area or extending to other regions, affecting prognosis.

View Article and Find Full Text PDF

Indwelling intrauterine contraceptive devices (IUDs) have surfaces that facilitate the attachment of spp., creating a suitable environment for biofilm formation. Due to this, vulvovaginal candidiasis (VVC) is frequently linked to IUD usage, necessitating the prompt removal of these devices for effective treatment.

View Article and Find Full Text PDF

A simple and green chemometrics-assisted spectrophotometric technique has beendeveloped and validated for the determination of antipyrine (ANT) and benzocaine HCl (BEN) along with the official impurity of ANT, antipyrine impurity A (ANT imp-A), and the degradation product of BEN, p-amino benzoic acid (PABA), in their quaternary mixture. Three models were developed and compared: partial least squares (PLS), artificial neural networks (ANN), and multivariate curve resolution-alternating least squares (MCR-ALS) where the four studied drugs were successfully quantified. The quantitative determination of the studied drugs was assessed using percentage recoveries, standard errors of prediction, and root mean square errors of prediction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!