Mitochondrial fragmentation and donut formation enhance mitochondrial secretion to promote osteogenesis.

Cell Metab

Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea. Electronic address:

Published: February 2023

Mitochondrial components have been abundantly detected in bone matrix, implying that they are somehow transported extracellularly to regulate osteogenesis. Here, we demonstrate that mitochondria and mitochondrial-derived vesicles (MDVs) are secreted from mature osteoblasts to promote differentiation of osteoprogenitors. We show that osteogenic induction stimulates mitochondrial fragmentation, donut formation, and secretion of mitochondria through CD38/cADPR signaling. Enhancing mitochondrial fission and donut formation through Opa1 knockdown or Fis1 overexpression increases mitochondrial secretion and accelerates osteogenesis. We also show that mitochondrial fusion promoter M1, which induces Opa1 expression, impedes osteogenesis, whereas osteoblast-specific Opa1 deletion increases bone mass. We further demonstrate that secreted mitochondria and MDVs enhance bone regeneration in vivo. Our findings suggest that mitochondrial morphology in mature osteoblasts is adapted for extracellular secretion, and secreted mitochondria and MDVs are critical promoters of osteogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmet.2023.01.003DOI Listing

Publication Analysis

Top Keywords

donut formation
12
mitochondrial
8
mitochondrial fragmentation
8
fragmentation donut
8
mitochondrial secretion
8
osteogenesis mitochondrial
8
mature osteoblasts
8
secreted mitochondria
8
mitochondria mdvs
8
osteogenesis
5

Similar Publications

This study investigates the effects of hot stamping on boron steel surface properties, comparing uncoated steel to Al-Si-coated steel, with a focus on developing atmosphere-controlled hot stamping technology. Experiments using a hat-shaped specimen revealed that uncoated steel formed a thick oxide layer due to exposure to atmospheric oxygen at high temperatures, negatively impacting surface quality and weldability. In contrast, the Al-Si-coated steel showed no oxide formation.

View Article and Find Full Text PDF

Background: Chinese jujube (Ziziphus jujuba Mill.), also called Chinese date, is one of the oldest and widely cultivated fruit trees with great economic values, which, at least, can be attributed to the melliferous flower with highly developed nectary that can secret huge amount of nectar in a rather tiny floral size. However, the morphological nature, metabolic products, developmental process, as well as molecular and regulatory mechanisms of jujube nectary remain largely unknown.

View Article and Find Full Text PDF

Tissue-engineered constructs combine the mechanical properties of biomaterials with biological agents to serve as scaffolds that direct the wound-healing process and promote tissue regeneration. A limitation to studying wound healing in vivo is that mouse skin contracts to heal rather than exhibiting granulation tissue formation and epithelialization like human skin. Therefore, it became necessary to develop a mouse model to better recapitulate human wound healing.

View Article and Find Full Text PDF

The multifaceted roles of mitochondria in osteoblasts: from energy production to mitochondrial-derived vesicle secretion.

J Bone Miner Res

September 2024

Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea.

Mitochondria in osteoblasts have been demonstrated to play multiple crucial functions in bone formation from intracellular adenosine triphosphate production to extracellular secretion of mitochondrial components. The present review explores the current knowledge about mitochondrial biology in osteoblasts, including mitochondrial biogenesis, bioenergetics, oxidative stress generation, and dynamic changes in morphology. Special attention is given to recent findings, including mitochondrial donut formation in osteoblasts, which actively generates mitochondrial-derived vesicles (MDVs), followed by extracellular secretion of small mitochondria and MDVs.

View Article and Find Full Text PDF

Mitochondria are involved in multiple aspects of neurodevelopmental processes and play a major role in the pathogenetic mechanisms leading to neuro-degenerative diseases. Fragile-X-related disorders (FXDs) are genetic conditions that occur due to the dynamic expansion of CGG repeats of the gene encoding for the RNA-binding protein FMRP, particularly expressed in the brain. This gene expansion can lead to premutation (PM, 56-200 CGGs), full mutation (FM, >200 CGGs), or unmethylated FM (UFM), resulting in neurodegeneration, neurodevelopmental disorders, or no apparent intellectual disability, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!