Objectives: CD103CD8T cells is a subtype of T cells with excellent tumor killing ability and it could response to immune checkpoint blockade therapy in several types of cancer, but the phenotype, role and molecular mechanism CD103CD8T cells in the OSCC still unclear.
Materials And Methods: The distribution and phenotype of CD103CD8T cells were investigated by performing multiplexed immunohistochemistry on human OSCC tissue microarray and flow cytometric analysis of fresh OSCC tumor-infiltrating lymphocytes (TILs). By in vivo use of anti-CD103 monoclonal antibody (mAb) in the 4MOSC1 tumor-bearing mouse model, CD103CD8T cell infiltration and cytotoxicity was clarified.
Results: The majority of CD8T cells in both human and animal OSCC intra-tumoral region were CD103CD8T cells with high expression levels of cytotoxic molecules, which can be impaired by CD103 blockade. In addition, combined use of anti-CD103 mAb with anti-CTLA-4 mAb displayed impaired immune checkpoint blockade therapy efficiency.
Conclusion: CD103CD8T cells are the major intra-tumoral subset of CD8T cells in both animal and human OSCC, and that CD103CD8T cells demonstrate remarkable tumor-infiltrating and tumor-killing properties, thereby CD103CD8T cells may critical for anti-CTLA-4 immunotherapy in OSCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.oraloncology.2023.106331 | DOI Listing |
Introduction: Solitary plasmacytomas are tumors characterized by a local increase of malignant plasma cells in soft tissue or bone and may occur anywhere without evidence of systemic disease. The aim was to focus on the main surgical techniques and outcomes for this rare chest wall tumor.
Methods: Patients with solitary plasmacytoma involving a rib, who were operated for diagnostic or treatment purposes between 2018 and 2023 were retrospectively reviewed.
Mycobacterium tuberculosis (M.tb) infection can lead to various outcomes, including active tuberculosis or latent tuberculosis infection (LTBI). Household contacts of TB cases have a high risk of acquiring LTBI.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India. Electronic address:
Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated.
View Article and Find Full Text PDFInt J Med Inform
January 2025
Department of Computer Science and Artificial Intelligence, University of Udine, 33100, Italy.
Background: Segmentation models for clinical data experience severe performance degradation when trained on a single client from one domain and distributed to other clients from different domain. Federated Learning (FL) provides a solution by enabling multi-party collaborative learning without compromising the confidentiality of clients' private data.
Methods: In this paper, we propose a cross-domain FL method for Weakly Supervised Semantic Segmentation (FL-W3S) of white blood cells in microscopic images.
J Med Food
January 2025
Department of Infectious Diseases and Liver Diseases, Ningbo Medical Centre Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University, Ningbo, China.
Disturbances of the intestinal barrier enabling bacterial translocation exacerbate alcoholic liver disease (ALD). GG (LGG) has been shown to exert beneficial effects in gut dysbiosis and chronic liver disease. The current study assessed the combined effects of LGG and metformin, which play roles in anti-inflammatory and immunoregulatory processes, in alcohol-induced liver disease mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!