The impact of π-π stacking interactions on photo-physical properties of hydroxyanthraquinones.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, P.O. XZBox 98135-674, Zahedan, Iran.

Published: May 2023

The impact of π-π stacking interactions on photo-physical properties of hydroxyanthraquinone (HA) has been investigated using the density functional (DFT) and time-dependent density functional theory (TD-DFT) calculations in the gas phase and solution media. The vertical transition is characterized with strong HOMO-LUMO transition in the complexes. The intramolecular hydrogen bond (IHB) made in the HA and π-π complexes is strengthened after S → S excitation, such that the proton transfers is facilitated in the first excited state. The complexes exhibit an exothermic excited state intramolecular proton transfer (ESIPT) in the solution media, which is a barrierless process for some complexes. The π-π stacking interaction affects the absorption and emission bands of HA, and provides a large Stokes shift. This indicates the desirable fluorescence properties of π-π complexes, which are cross-validated by geometries, potential energy curve scannings, electronic and vibrational spectra, and frontier molecular orbital analyses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2023.122453DOI Listing

Publication Analysis

Top Keywords

π-π stacking
12
impact π-π
8
stacking interactions
8
interactions photo-physical
8
photo-physical properties
8
density functional
8
solution media
8
π-π complexes
8
excited state
8
complexes
5

Similar Publications

First-principles calculations show that the geometric and electronic properties of silicene-related systems have diversified phenomena. Critical factors of group-IV monoelements, like buckled/planar structures, stacking configurations, layer numbers, and van der Waals interactions of bilayer composites, are considered simultaneously. The theoretical framework developed provides a concise physical and chemical picture.

View Article and Find Full Text PDF

Direct/indirect band gap tunability in van der Waals heterojunctions based on ternary 2D materials Mo W Y.

J Phys Condens Matter

December 2019

School of Physics and Electronics, and Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, Changsha 410083, People's Republic of China.

Artificial van der Waals (vdW) heterojunctions assembled by atomically-thin two-dimensional (2D) materials have demonstrated new physical phenomena and unusual properties, thus triggering new electronic, optoelectronic, valleytronic and photocatalytic application. Herein, the electronic band structures of different vdW heterojunctions based on ternary Mo W Y (Y  =  S, Se; x  =  0-1) monolayer with five stacking orders (AA, AA[Formula: see text], A[Formula: see text]B, AB, AB[Formula: see text]) have been investigated using first principle calculations. The direct/indirect band gap has been obtained in the AA[Formula: see text] stacking type-II heterojunctions, ranging from 0.

View Article and Find Full Text PDF

Dithiazolyl (DTA)-based radicals have furnished many examples of organic spin-transition materials, some of them occurring with hysteresis and some others without. Herein, we present a combined computational and experimental study aimed at deciphering the factors controlling the existence or absence of hysteresis by comparing the phase transitions of 4-cyanobenzo-1,3,2-dithiazolyl and 1,3,5-trithia-2,4,6-triazapentalenyl radicals, which are prototypical examples of non-bistable and bistable spin transitions, respectively. Both materials present low-temperature diamagnetic and high-temperature paramagnetic structures, characterized by dimerized (⋅⋅⋅A-A⋅⋅⋅A-A⋅⋅⋅) and regular (⋅⋅⋅A⋅⋅⋅A⋅⋅⋅A⋅⋅⋅A⋅⋅⋅) π-stacks of radicals, respectively.

View Article and Find Full Text PDF

A 500 and 300 MHz proton NMR study of the series of oligoarabinonucleotides 5'aAMP, 3'aAMP, aA-aA, (aA-)2aA and (aA-)3aA is presented. In addition, circular dichroism is used to study the stacking behaviour of aA-aA. The complete 1H-NMR spectral assignment of the compounds (except the tetramer) is given.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!