Insights into the seed microbiome and its ecological significance in plant life.

Microbiol Res

Department of Botany, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India.

Published: April 2023

In recent years, the microbiome has attracted much attention because of the multiple roles and functions that microbes play in plants, animals, and human beings. Seed-associated microbes are of particular interest in being the initial microbial inoculum that affects the critical early life stages of a plant. The seed-microbe interactions are also known to improve nutrient acquisition, resilience against pathogens, and resistance against abiotic stresses. Despite these diverse roles, the seed microbiome has received little attention in plant ecology. Thus, we review the current knowledge on seed microbial diversity, community structure, and functions obtained through culture-dependent and culture-independent approaches. Furthermore, we present a comprehensive synthesis of the ecological literature on seed-microbe interactions to better understand the impact of these interactions on plant health and productivity. We suggest that future research should focus on the role of the seed microbiome in the establishment, colonization and spread of plant species in their native and non-native ranges as it may provide new insights into conservation biology and invasion ecology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micres.2023.127318DOI Listing

Publication Analysis

Top Keywords

seed microbiome
12
seed-microbe interactions
8
plant
5
insights seed
4
microbiome
4
microbiome ecological
4
ecological significance
4
significance plant
4
plant life
4
life years
4

Similar Publications

Postnatal establishment of enteric metabolic, host-microbial and immune homeostasis is the result of precisely timed and tightly regulated developmental and adaptive processes. Here, we show that infection with the invasive enteropathogen Typhimurium results in accelerated maturation of the neonatal epithelium with premature appearance of antimicrobial, metabolic, developmental, and regenerative features of the adult tissue. Using conditional Myd88-deficient mice, we identify the critical contribution of immune cell-derived mediators.

View Article and Find Full Text PDF

Purpose: To characterize the ocular surface microbiota in regular contact lens wearers with dry eyes and assess the effectiveness of reducing bacterial load using a liposomal ozonated oil solution.

Methods: This prospective, longitudinal, controlled study randomized subjects into two groups. Group A (45 subjects) received hydroxypropylmethylcellulose (HPMC, Artific®), while Group B (41 subjects) received ozonated sunflower seed oil with soybean phospholipids (OSSO, Ozonest®).

View Article and Find Full Text PDF

Breast cancer (BC) is one of the leading causes of death and morbidity among women worldwide. Epidemiologic evidence shows that the risk of BC and other chronic diseases decreases as the proportion of whole plant foods increases, while the proportion of animal foods (fish, meat, poultry, eggs, seafood, and dairy products) and non-whole plant foods (e.g.

View Article and Find Full Text PDF

The nutritional environment during fetal and early postnatal life has a long-term impact on growth, development, and metabolic health of the offspring, a process termed "nutritional programming." Rodent models studying programming effects of nutritional interventions use either purified or grain-based rodent diets as background diets. However, the impact of these diets on phenotypic outcomes in these models has not been comprehensively investigated.

View Article and Find Full Text PDF

Recently we demonstrated that the seed microbiome of certain spinach (Spinacia oleracea) seed lots can confer disease suppression against Globisporangium ultimum damping-off (previously known as Pythium ultimum). We hypothesised that differences in the microbial community composition of spinach seed lots correlate with the levels of damping-off suppressiveness of each seed lot. Here, we show that a large proportion of variance in seed-associated bacterial (16S) and fungal (ITS1) amplicon sequences was explained by seed lot identity, while 9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!