A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Leveraging Natural Language Processing to Extract Features of Colorectal Polyps From Pathology Reports for Epidemiologic Study. | LitMetric

Purpose: Histopathologic features are critical for studying risk factors of colorectal polyps, but remain deeply embedded within unstructured pathology reports, requiring costly and time-consuming manual abstraction for research. In this study, we developed and evaluated a natural language processing (NLP) pipeline to automatically extract histopathologic features of colorectal polyps from pathology reports, with an emphasis on individual polyp size. These data were then linked with structured electronic health record (EHR) data, creating an analysis-ready epidemiologic data set.

Methods: We obtained 24,584 pathology reports from colonoscopies performed at the University of Utah's Gastroenterology Clinic. Two investigators annotated 350 reports to determine inter-rater agreement, develop an annotation scheme, and create a reference standard for performance evaluation. The pipeline was then developed, and performance was compared against the reference for extracting polyp location, histology, size, shape, dysplasia, and the number of polyps. Finally, the pipeline was applied to 24,225 unseen reports and NLP-extracted data were linked with structured EHR data.

Results: Across all features, our pipeline achieved a precision of 98.9%, a recall of 98.0%, and an F1-score of 98.4%. In patients with polyps, the pipeline correctly extracted 95.6% of sizes, 97.2% of polyp locations, 97.8% of histology, 98.3% of shapes, and 98.3% of dysplasia levels. When applied to unseen data, the pipeline classified 12,889 patients as having polyps, 4,907 patients without polyps, and extracted the features of 28,387 polyps. Tubular adenomas were the most common subtype (55.9%), 8.1% of polyps were advanced adenomas, and the mean polyp size was 0.57 (±0.4) cm.

Conclusion: Our pipeline extracted histopathologic features of colorectal polyps from colonoscopy pathology reports, most notably individual polyp sizes, with considerable accuracy. This study demonstrates the utility of NLP for extracting polyp features and linking these data with EHR data to create an epidemiologic data set to study colorectal polyp risk factors and outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10166420PMC
http://dx.doi.org/10.1200/CCI.22.00131DOI Listing

Publication Analysis

Top Keywords

pathology reports
20
colorectal polyps
16
features colorectal
12
histopathologic features
12
patients polyps
12
polyps
10
natural language
8
language processing
8
polyps pathology
8
risk factors
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!