Humans constantly assess the appearance of materials to plan actions, such as stepping on icy roads without slipping. Visual inference of materials is important but challenging because a given material can appear dramatically different in various scenes. This problem especially stands out for translucent materials, whose appearance strongly depends on lighting, geometry, and viewpoint. Despite this, humans can still distinguish between different materials, and it remains unsolved how to systematically discover visual features pertinent to material inference from natural images. Here, we develop an unsupervised style-based image generation model to identify perceptually relevant dimensions for translucent material appearances from photographs. We find our model, with its layer-wise latent representation, can synthesize images of diverse and realistic materials. Importantly, without supervision, human-understandable scene attributes, including the object's shape, material, and body color, spontaneously emerge in the model's layer-wise latent space in a scale-specific manner. By embedding an image into the learned latent space, we can manipulate specific layers' latent code to modify the appearance of the object in the image. Specifically, we find that manipulation on the early-layers (coarse spatial scale) transforms the object's shape, while manipulation on the later-layers (fine spatial scale) modifies its body color. The middle-layers of the latent space selectively encode translucency features and manipulation of such layers coherently modifies the translucency appearance, without changing the object's shape or body color. Moreover, we find the middle-layers of the latent space can successfully predict human translucency ratings, suggesting that translucent impressions are established in mid-to-low spatial scale features. This layer-wise latent representation allows us to systematically discover perceptually relevant image features for human translucency perception. Together, our findings reveal that learning the scale-specific statistical structure of natural images might be crucial for humans to efficiently represent material properties across contexts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942964 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1010878 | DOI Listing |
Commun Biol
January 2025
Dept. Electrical Engineering and Computer Science, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA.
Predicting novel mutations has long-lasting impacts on life science research. Traditionally, this problem is addressed through wet-lab experiments, which are often expensive and time consuming. The recent advancement in neural language models has provided stunning results in modeling and deciphering sequences.
View Article and Find Full Text PDFElife
January 2025
State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University & IDG/McGovern Institute for Brain Research, Beijing, China.
Speech comprehension involves the dynamic interplay of multiple cognitive processes, from basic sound perception, to linguistic encoding, and finally to complex semantic-conceptual interpretations. How the brain handles the diverse streams of information processing remains poorly understood. Applying Hidden Markov Modeling to fMRI data obtained during spoken narrative comprehension, we reveal that the whole brain networks predominantly oscillate within a tripartite latent state space.
View Article and Find Full Text PDFAs digital media grows, there is an increasing demand for engaging content that can captivate audiences. Along with that, the monetary conversion of those engaging videos is also increased. This leads to the way for more content-driven videos, which can generate revenue.
View Article and Find Full Text PDFA variety of deep generative models have been adopted to perform functional protein generation. Compared to 3D protein design, sequence-based generation methods, which aim to generate amino acid sequences with desired functions, remain a major approach for functional protein generation due to the abundance and quality of protein sequence data, as well as the relatively low modeling complexity for training. Although these models are typically trained to match protein sequences from the training data, exact matching of every amino acid is not always essential.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Biomedical Informatics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, United States of America.
While single-cell experiments provide deep cellular resolution within a single sample, some single-cell experiments are inherently more challenging than bulk experiments due to dissociation difficulties, cost, or limited tissue availability. This creates a situation where we have deep cellular profiles of one sample or condition, and bulk profiles across multiple samples and conditions. To bridge this gap, we propose BuDDI (BUlk Deconvolution with Domain Invariance).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!