Body mass estimates from postcranial skeletons and implication for positional behavior in Nacholapithecus kerioi: Evolutionary scenarios of modern apes.

Anat Rec (Hoboken)

Division of Human Anatomy and Biological Anthropology, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga, Japan.

Published: October 2023

This study reported the body mass (BM) estimates of the Middle Miocene fossil hominoid Nacholapithecus kerioi from Africa. The average BM estimates from all forelimb and hindlimb skeletal elements was 22.7 kg, which is slightly higher than the previously reported estimate of ~22 kg. This study revealed that Nacholapithecus has a unique body proportion with an enlarged forelimb relative to a smaller hindlimb, suggesting an antipronograde posture/locomotion, which may be related to the long clavicle, robust ribs, and some hominoid-like vertebral morphology. Because the BM of Nacholapithecus in this study was estimated to be below 30 kg, Nacholapithecus probably did not have relatively shorter and robust femora, which may result from other mechanical constraints, as seen in extant African hominoids. The BM estimate of Nacholapithecus suggests that full substantial modifications of the trunk and forelimb anatomy for risk avoidance and foraging efficiency, as seen in extant great apes, would not be expected in Nacholapithecus. Because larger monkeys are less arboreal (e.g., Mandrillus sphinx or Papio spp.), and the maximum BM among extant constant arboreal cercopithecoids is ~24 kg (male Nasalis larvatus), Nacholapithecus would be a constant arboreal primate. Although caution should be applied because of targeting only males in this study, arboreal quadrupedalism with upright posture and occasional antipronograde locomotion (e.g., climbing, chambering, descending, arm-swing, and sway) using the powerful grasping capacity of the hand and foot may be assumed for positional behavior of Nacholapithecus.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ar.25173DOI Listing

Publication Analysis

Top Keywords

nacholapithecus
9
body mass
8
mass estimates
8
positional behavior
8
behavior nacholapithecus
8
nacholapithecus kerioi
8
constant arboreal
8
estimates postcranial
4
postcranial skeletons
4
skeletons implication
4

Similar Publications

Objectives: The elbow of Nacholapithecus has been extensively described qualitatively, however its ulnar morphology has never been the focus of an in-depth quantitative analysis before. Hence, our main aim is quantifying the proximal ulnar morphology in Nacholapithecus and exploring whether it is similar to those of Equatorius and Griphopithecus as previously reported.

Materials And Methods: We compared Nacholapithecus proximal ulnar morphology with a sample of extant and extinct anthropoids through principal component analysis and agglomerative hierarchical cluster analysis.

View Article and Find Full Text PDF

An ape partial postcranial skeleton (KNM-NP 64631) from the Middle Miocene of Napudet, northern Kenya.

J Hum Evol

July 2024

Department of Earth and Planetary Sciences, Rutgers University, Busch Campus, Piscataway, NJ 08854, USA; Department of Anthropology, Rutgers University, Douglass Campus, New Brunswick, NJ 08901, USA.

An ape partial postcranial skeleton (KNM-NP 64631) was recovered during the 2015-2021 field seasons at Napudet, a Middle Miocene (∼13 Ma) locality in northern Kenya. Bony elements representing the shoulder, elbow, hip, and ankle joints, thoracic and lumbar vertebral column, and hands and feet, offer valuable new information about the body plan and positional behaviors of Middle Miocene apes. Body mass estimates from femoral head dimensions suggest that the KNM-NP 64631 individual was smaller-bodied (c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!