Targeted photodynamic neutralization of SARS-CoV-2 mediated by singlet oxygen.

Photochem Photobiol Sci

Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, People's Republic of China.

Published: June 2023

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has been on a rampage for more than two years. Vaccines in combination with neutralizing antibodies (NAbs) against SARS-CoV-2 carry great hope in the treatment and final elimination of coronavirus disease 2019 (COVID-19). However, the relentless emergence of variants of concern (VOC), including the most recent Omicron variants, presses for novel measures to counter these variants that often show immune evasion. Hereby we developed a targeted photodynamic approach to neutralize SARS-CoV-2 by engineering a genetically encoded photosensitizer (SOPP3) to a diverse list of antibodies targeting the wild-type (WT) spike protein, including human antibodies isolated from a 2003 Severe acute respiratory syndrome (SARS) patient, potent monomeric and multimeric nanobodies targeting receptor-binding domain (RBD), and non-neutralizing antibodies (non-NAbs) targeting the more conserved N-terminal domain (NTD). As confirmed by pseudovirus neutralization assay, this targeted photodynamic approach significantly increased the efficacy of these antibodies, especially that of non-NAbs, against not only the WT but also the Delta strain and the heavily immune escape Omicron strain (BA.1). Subsequent measurement of infrared phosphorescence at 1270 nm confirmed the generation of singlet oxygen (O) in the photodynamic process. Mass spectroscopy assay uncovered amino acids in the spike protein targeted by O. Impressively, Y145 and H146 form an oxidization "hotspot", which overlaps with the antigenic "supersite" in NTD. Taken together, our study established a targeted photodynamic approach against the SARS-CoV-2 virus and provided mechanistic insights into the photodynamic modification of protein molecules mediated by O.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9906597PMC
http://dx.doi.org/10.1007/s43630-023-00381-wDOI Listing

Publication Analysis

Top Keywords

targeted photodynamic
16
photodynamic approach
12
singlet oxygen
8
severe acute
8
acute respiratory
8
respiratory syndrome
8
sars-cov-2 virus
8
spike protein
8
antibodies non-nabs
8
targeted
5

Similar Publications

The angiopoietin (Ang)-Tie axis, critical for endothelial cell function and vascular development, is a promising therapeutic target for treating vascular disorders and inflammatory conditions like sepsis. This study aimed to enhance the binding affinity of recombinant Ang1 variants to the Tie2 and explore their therapeutic potential. Structural insights from the Ang1-Tie2 complex enabled the identification of key residues within the Ang1 receptor binding domain (RBD) critical for Tie2 interaction.

View Article and Find Full Text PDF

Assembly-enhanced recognition: A biomimetic pathway to achieve ultrahigh affinities.

Proc Natl Acad Sci U S A

January 2025

College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.

On the one hand, nature utilizes hierarchical assemblies to create complex biological binding pockets, enabling ultrastrong recognition toward substrates in aqueous solutions. On the other hand, chemists have been fervently pursuing high-affinity recognition by constructing covalently well-preorganized stereoelectronic cavities. The potential of noncovalent assembly, however, for enhancing molecular recognition has long been underestimated.

View Article and Find Full Text PDF

Aptamer-Driven Multifunctional Nanoplatform for Near-Infrared Fluorescence Imaging and Rapid Inactivation of .

Anal Chem

January 2025

State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.

() is a prominent pathogen responsible for intestinal infections, primarily transmitted through contaminated food and water. This underscores the critical need for precise and biocompatible technologies enabling early detection and intervention of bacterial colonization . Herein, a multifunctional nanoplatform (IR808-Au@ZIF-90-Apt) was designed, utilizing an -specific aptamer to initiate cascade responses triggered by intracellular ATP and GSH.

View Article and Find Full Text PDF

Polymer-based photosensitizers have found various applications in photodynamic therapy (PDT). However, the absence of targeting ability commonly results in a substantial reduction in photosensitizer accumulation at the tumor site, significantly limiting the therapeutic efficacy of the system. In addition, the development of biodegradable polymeric photosensitizers is of critical importance for biological applications.

View Article and Find Full Text PDF

Gold nanorods coated with self-assembled silk fibroin for improving their biocompatibility and facilitating targeted photothermal-photodynamic cancer therapy.

Nanoscale

January 2025

Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 Zhejiang, P. R. China.

Gold nanorods (AuNRs) have shown great potential as photothermal agents for cancer therapy. However, the biosafety of AuNRs ordinarily synthesized using a cationic ligand assistance procedure has always been a subject of controversy, which limits their application in tumor therapy. In this study, we propose a novel strategy to enhance the biocompatibility of AuNRs by constructing a biological coating derived from silk fibroin (SF) on their surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!