Considering the global pandemic we currently experience, face masks have become standard in our daily routine. Even though surgical masks are established as a safety measure against the dissemination of COVID-19, previous research showed that their wearing compromises face recognition. Consequently, the capacity to remember to whom we transmit information-destination memory-could also be compromised. In our study, through a between-participants design (experiment 1) and a within-participants design (experiment 2), undergraduate students have to transmit Portuguese proverbs to masked and unmasked celebrity faces. Following our hypothesis, participants who shared information with masked faces had worse destination memory performance than those who shared information with unmasked faces. Also, we observed lower recognition for masked faces compared to unmasked faces. These results were expected since using a surgical mask affects facial recognition, thus making it harder to recognize a person to whom information was previously transmitted. More importantly, these results also support the idea that variables associated with the recipient's face are important for destination memory performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907208PMC
http://dx.doi.org/10.1007/s10339-023-01126-4DOI Listing

Publication Analysis

Top Keywords

destination memory
12
face masks
8
design experiment
8
masked faces
8
memory performance
8
unmasked faces
8
faces
5
remembering transmit
4
transmit pandemics
4
face
4

Similar Publications

Background: Since older adults spend significant time in their neighborhood environment, environmental factors such as neighborhood socioeconomic disadvantage, high racial segregation, low healthy food availability, low access to recreation, and minimal social engagement may have adverse effects on cognitive function and increase susceptibility to dementia. DNA methylation, which is associated with neighborhood characteristics as well as cognitive function and white matter hyperintensity (WMH), may act as a mediator between neighborhood characteristics and neurocognitive outcomes.

Methods: In this study, we examined whether DNA methylation in peripheral blood leukocytes mediates the relationship between neighborhood characteristics and cognitive function (N = 542) or WMH (N = 466) in older African American (AA) participants without preliminary evidence of dementia from the Genetic Epidemiology Network of Arteriopathy (GENOA).

View Article and Find Full Text PDF

How a single, naive T cell can give rise to diverse progenies of effector and memory cells is not completely understood. One way to achieve this is by asymmetric cell division (ACD), characterized by an unequal distribution of cellular cargo, resulting in divergent daughter cells already after the first division-one being more destined to an effector and the other more to a memory fate. Here, we established two methods to analyze the relative distribution of the older "mother" centrosome and the younger "daughter" centrosome during the first cell division of activated CD8 T cells.

View Article and Find Full Text PDF

An essential role of glial cells is to comply with the large and fluctuating energy needs of neurons. Metabolic adaptation is integral to the acute stress response, suggesting that glial cells could be major, yet overlooked, targets of stress hormones. Here we show that Dh44 neuropeptide, Drosophila homologue of mammalian corticotropin-releasing hormone (CRH), acts as an experience-dependent metabolic switch for glycolytic output in glia.

View Article and Find Full Text PDF
Article Synopsis
  • * Recent research using advanced neural monitoring devices has expanded knowledge of spatial navigation across various species, revealing that while many animals have head direction cells, few possess place or grid cells akin to those in rodents.
  • * Interestingly, certain bird species like tufted titmice and quails have been found to have rodent-like place and head direction cells in their medial pallium, suggesting a shared evolutionary trait in how different animals navigate their environments based on their ecological needs.
View Article and Find Full Text PDF

Background: Magnetic resonance imaging (MRI) has recently enabled to identify four distinct Alzheimer's disease (AD) subtypes: hippocampal sparing (HpSp), typical AD (tAD), limbic predominant (Lp), and minimal atrophy (MinAtr). To date, however, the natural history of these subtypes, especially regarding the presence of subjects switching to other MRI patterns and their clinical and biological differences, remains poorly understood.

Objective: To investigate the clinical and biological underpinnings of longitudinal atrophy pattern progression in AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!