The present study explored the process of bioremediation, sequestration of carbon dioxide, and biofuel production using multifarious potent freshwater microalgae Tetradesmus obliquus TS03. The heavy metals were reduced, viz., 8.34 mg of cadmium (95.13%), 4.56 mg of chromium (97.28%), 1.34 mg of copper (98.67%), 1.24 mg of cobalt (98.19%), 1.93 mg of lead (96.72%), 2.31 mg of nickel (97.14%), and 2.23 mgL of zinc (96.59%) using photobioreactor microalgal treatment method. The heavy metal biosorption capacity rate (q) was 98.90% determined by the Langmuir and Freundlich isotherm kinetics model at 10 days of effluent treatment using Tetradesmus obliquus TS03. The microalgae T. obliquus TS03 utilized 98.34% of carbon dioxide (CO) enhanced by acetyl CoA carboxylase and RuBisCO enzymes. The biodiesel was extracted from microalga and identified 32 fatty acid methyl ester major compounds viz., tetradecanoate methyl ester, hexadecanoic acid methyl ester, tridecanoic acid methyl ester, heptadecatrienoic acid methyl ester, octadecanoic acid methyl ester, eicosanoic acid methyl ester, pentadecanoic acid methyl ester, and cis-methylicosanoate using gas mass chromatography (GCMS). The biodiesel functional groups were identified, viz., amides, phenols, alcohols, alkynes, carboxylic acids, carbonyls, and ketones groups using Fourier transformation infrared (FTIR). The bioethanol was identified using high-performance liquid chromatography (HPLC) and determined the peak presented at RT of 4.35 min (75,693.1046 µV s).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-25703-4 | DOI Listing |
Chem Biodivers
January 2025
Liverpool John Moores University, Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Byrom Street, Liverpool, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Diospyros discolor Willd., commonly known as Velvet apple or Mabolo, is an underutilized fruit. Traditionally, various parts of D.
View Article and Find Full Text PDFSci Rep
January 2025
Anatomy Department, College of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China.
Hypertension is one of the most serious chronic diseases. This study will focus on the systemic antihypertensive mechanisms of 5,7-dihydroxyflavone from in silico simulations to in vivo validations. In-silico studies were applied by network pharmacology, molecular docking, and molecular dynamic simulation.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar-752050, India.
The reduction of aryl carboxylates to methyl and allyl arene was attained using a well-defined cobalt catalyst. This catalytic transformation employs only a sub-stoichiometric amount of base, and diethylsilane as a reductant. Catalytic activation of the Si-H bond of the silanes, C-O bond of the ester, and silyl ether intermediates by cobalt is crucial to achieving exhaustive reduction.
View Article and Find Full Text PDFAutophagy
January 2025
Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany.
Lysosomes are the major cellular organelles responsible for nutrient recycling and degradation of cellular material. Maintenance of lysosomal integrity is essential for cellular homeostasis and lysosomal membrane permeabilization (LMP) sensitizes toward cell death. Damaged lysosomes are repaired or degraded via lysophagy, during which glycans, exposed on ruptured lysosomal membranes, are recognized by galectins leading to K48- and K63-linked poly-ubiquitination (poly-Ub) of lysosomal proteins followed by recruitment of the macroautophagic/autophagic machinery and degradation.
View Article and Find Full Text PDFTheranostics
January 2025
Department of neurology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea.
It remains unclear why unilateral proximal carotid artery occlusion (UCAO) causes benign oligemia in mice, yet leads to various outcomes (asymptomatic-to-death) in humans. We hypothesized that inhibition of nitric oxide synthase (NOS) both transforms UCAO-mediated oligemia into full infarction and expands pre-existing infarction. Using 900 mice, we i) investigated stroke-related effects of UCAO with/without intraperitoneal administration of the NOS inhibitor (NOSi) N-nitro-L-arginine methyl ester (L-NAME, 400 mg/kg); ii) examined the rescue effect of the NO-donor, molsidomine (200 mg/kg at 30 minutes); and iii) tested the impact of antiplatelet medications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!