Hyperactivated Janus kinase (JAK) signaling is an appreciated drug target in human cancers. Numerous mutant JAK molecules as well as inherent and acquired drug resistance mechanisms limit the efficacy of JAK inhibitors (JAKi). There is accumulating evidence that epigenetic mechanisms control JAK-dependent signaling cascades. Like JAKs, epigenetic modifiers of the histone deacetylase (HDAC) family regulate the growth and development of cells and are often dysregulated in cancer cells. The notion that inhibitors of histone deacetylases (HDACi) abrogate oncogenic JAK-dependent signaling cascades illustrates an intricate crosstalk between JAKs and HDACs. Here, we summarize how structurally divergent, broad-acting as well as isoenzyme-specific HDACi, hybrid fusion pharmacophores containing JAKi and HDACi, and proteolysis targeting chimeras for JAKs inactivate the four JAK proteins JAK1, JAK2, JAK3, and tyrosine kinase-2. These agents suppress aberrant JAK activity through specific transcription-dependent processes and mechanisms that alter the phosphorylation and stability of JAKs. Pharmacological inhibition of HDACs abrogates allosteric activation of JAKs, overcomes limitations of ATP-competitive type 1 and type 2 JAKi, and interacts favorably with JAKi. Since such findings were collected in cultured cells, experimental animals, and cancer patients, we condense preclinical and translational relevance. We also discuss how future research on acetylation-dependent mechanisms that regulate JAKs might allow the rational design of improved treatments for cancer patients. SIGNIFICANCE STATEMENT: Reversible lysine--N acetylation and deacetylation cycles control phosphorylation-dependent Janus kinase-signal transducer and activator of transcription signaling. The intricate crosstalk between these fundamental molecular mechanisms provides opportunities for pharmacological intervention strategies with modern small molecule inhibitors. This could help patients suffering from cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/pharmrev.122.000612 | DOI Listing |
Reumatismo
January 2025
Rheumatology Unit, Department of Medical Sciences, University of Ferrara.
Objective: Interstitial lung disease (ILD) is rare, but it is one of the most frequent extra-articular manifestations and a relevant cause of morbidity and mortality in rheumatoid arthritis (RA). Over the past few years, Janus kinase inhibitors (JAKis) have been reported to have promising efficacy in the treatment of active RA, but recent concerns have been raised about their safety profile, namely malignancy and cardiovascular disease, limiting their use to certain patient categories.
Methods: The objective of this narrative review is to summarize the current evidence of the efficacy and safety of JAKis in RA-ILD management, investigating a possible emerging role for this drug class in such subset of patients.
J Am Acad Dermatol
January 2025
Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Japan.
Background: Long-term (2-year) effectiveness of upadacitinib for atopic dermatitis (AD) is unknown in real-world practice.
Objective: To evaluate 96-week real-world effectiveness of upadacitinib in Japanese patients with moderate-to-severe AD, stratified by the presence or absence of prior systemic therapies.
Methods: This prospective study included 327 Japanese patients treated with upadacitinib 15 mg (n = 248) or 30 mg (n = 79).
Dermatol Ther (Heidelb)
January 2025
Department of Dermatology, University of Tsukuba, Tsukuba, Japan.
Introduction: Patients with moderate-to-severe atopic dermatitis (AD), a body surface area (BSA) of ≤ 40%, and an itch numerical rating scale (NRS) score of ≥ 7 ("BARI itch dominant") have been characterized as an important group to consider for the oral janus kinase (JAK) 1/2 inhibitor baricitinib (BARI). Herein we aim to evaluate quality of life (QoL) and functioning outcomes in adult patients with BSA ≤ 40% and itch NRS ≥ 7 at baseline (BL) who received BARI 4 mg in the topical corticosteroid (TCS) combination trial BREEZE-AD7.
Materials: BREEZE-AD7 was a randomized, double-blind, placebo-controlled, parallel-group outpatient study involving adult patients with moderate-to-severe AD who received once-daily placebo or 2-mg or 4-mg BARI in combination with TCS for 16 weeks.
Hepatol Commun
February 2025
Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
Background: Cell therapy demonstrates promising potential as a substitute therapeutic approach for liver cirrhosis. We have developed a strategy to effectively expand murine and human hepatocyte-derived liver progenitor-like cells (HepLPCs) in vitro. The primary objective of the present study was to apply HepLPCs to the treatment of liver cirrhosis and to elucidate the underlying mechanisms responsible for their therapeutic efficacy.
View Article and Find Full Text PDFiScience
February 2025
Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
Pattern recognition receptors (PRRs), consisting of Toll-like receptors, RIG-I-like receptors, cytosolic DNA sensors, and NOD-like receptors, sense exogenous pathogenic molecules and endogenous damage signals to maintain physiological homeostasis. Upon activation, PRRs stimulate the sensitization of nuclear factor κB, mitogen-activated protein kinase, TANK-binding kinase 1-interferon (IFN) regulatory factor, and inflammasome signaling pathways to produce inflammatory factors and IFNs to activate Janus kinase/signal transducer and activator of transcription signaling pathways, resulting in anti-infection, antitumor, and other specific immune responses. Palmitoylation is a crucial type of post-translational modification that reversibly alters the localization, stability, and biological activity of target molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!