A wide variety of transition metals, including copper and gold, have been successfully used as substrates for graphene growth. On the other hand, it has been challenging to grow graphene on silver, so realistic applications by combining graphene and silver for improved electrode stability and enhanced surface plasmon resonance in organic light-emitting diodes and biosensing have not been realized to date. Here, we demonstrate the surface passivation of silver through the single-step rapid growth of nanocrystalline multilayer graphene on silver via low-temperature plasma-enhanced chemical vapor deposition (PECVD). The effect of the growth time on the graphene quality and the underlying silver characteristics is investigated by Raman spectroscopy, X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy (XPS), and cross-sectional annular dark-field scanning transmission electron microscopy (ADF-STEM). These results reveal nanocrystalline graphene structures with turbostratic layer stacking. Based on the XPS and ADF-STEM results, a PECVD growth mechanism of graphene on silver is proposed. The multilayer graphene also provides excellent long-term protection of the underlying silver surface from oxidation after 5 months of air exposure. This development thus paves the way toward realizing technological applications based on graphene-protected silver surfaces and electrodes as well as hybrid graphene-silver plasmonics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951176 | PMC |
http://dx.doi.org/10.1021/acsami.2c21809 | DOI Listing |
Small Methods
December 2024
Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences, Leninsky pr., 31, building 4, Moscow, 119071, Russia.
A novel phthalocyanine-based hybrid nanofilm is for the first time successfully applied as an oxidative platform for surface enhanced Raman spectroscopy (SERS) sensing to fine-resolve Raman-inactive compounds. The hybrid is formed by self-assembly of zinc(II) 2,3,9,10,16,17,23,24-Octa[(3',5'-dicarboxy)-phenoxy]phthalocyaninate (ZnPc*) with the solid-supported monolayer of graphene oxide (GO) mediated by zinc acetate metal cluster. Atomic force microscopy, UV-vis and fluorescence spectroscopies confirm that this simple coordination motive in combination with molecular structure of ZnPc* prevents contact quenching of the light-excited triplet state through aromatic stacking with GO particles.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia.
Doping of carbon dots (CDs) with heteroatoms has garnered growing attention in recent years as a useful method of controlling their physicochemical properties. In this study, a new dual-mode sensor based on silver-doped CDs (AgCDs) derived from lignin was developed for fluorometric and spectrophotometric determination of valsartan (VAL). The analysis of AgCDs revealed a structure that closely resembled graphene oxide, with the successful doping of Ag.
View Article and Find Full Text PDFBiomater Sci
December 2024
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
Pathogenic bacterial growth at wound sites, particularly , poses a serious threat during trauma. Delayed treatment can lead to increased inflammation and severe tissue damage. In this study, a chitosan cross-linked polycationic peptide-conjugated graphene-silver (CGrAP) nanocomposite hydrogel film was developed as an antibacterial wound dressing to treat infections.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Mathematical and Physical Science and Engineering, Hebei University of Engineering, Handan 056038, Hebei, China. Electronic address:
The surface-enhanced Raman scattering (SERS) technique provides a quick and reliable method for detecting pesticide residues. In this study, flexible substrates, composed of orderly arranged silver nanospheres (Ag NPs) films on graphene paper, were fabricated through a simple, low-cost Ag NP self-assembly process at a liquid-liquid interface, followed by transfer of the films onto the graphene paper. The SERS performance of the fabricated substrates was evaluated using a portable Raman spectrometer, with rhodamine 6G (R6G) serving as the probe molecule.
View Article and Find Full Text PDFNanophotonics
July 2024
Centre for Advanced Laser Techniques, Institute of Physics, Bijenička 46, 10000 Zagreb, Croatia.
Converting transverse photons into longitudinal two-dimensional plasmon--polaritons (2D-PP) and vice versa presents a significant challenge within the fields of photonics and plasmonics. Therefore, understanding the mechanism which increases the photon - 2D-PP conversion efficiency could significantly contribute to those efforts. In this study, we theoretically examine how efficiently incident radiation, when scattered by a silver spherical nanoparticle (Ag-NP), can be transformed into 2D-PP within van der Waals (vdW) heterostructures composed of hexagonal boron nitride and graphene (hBN/Gr composites).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!