Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Artificial synapses with the capability of optical sensing and synaptic functions are fundamental components to construct neuromorphic visual systems. However, most reported artificial optical synapses require a combination of optical and electrical stimuli to achieve bidirectional synaptic conductance modulation, leading to an increase in the processing time and system complexity. Here, an all-optically controlled artificial synapse based on the graphene/titanium dioxide (TiO) quantum dot heterostructure is reported, whose conductance could be reversibly tuned by the effects of light-induced oxygen adsorption and desorption. Synaptic behaviors, such as excitatory and inhibitory, short-term and long-term plasticity, and learning-forgetting processes, are implemented using the device. An artificial neural network simulator based on the artificial synapse was used to train and recognize handwritten digits with a recognition rate of 92.2%. Furthermore, a 5 × 5 optical synaptic array that could simultaneously sense and memorize light stimuli was fabricated, mimicking the sensing and memory functionality of the retina. Such an all-optically controlled artificial synapse shows a promising prospect in the application of perception, learning, and memory tasks for future neuromorphic visual systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c20166 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!