Human ATP-binding cassette superfamily G member 2 (ABCG2) protein is a member of the ABC transporter family, which is responsible for multidrug resistance (MDR) in cancerous cells. MDR reduces the effectiveness of chemotherapy in breast cancer, which is one of the leading causes of death in women globally. MDR in cancer cells is one of the immediate signs of progression of resistance; thus, various anticancer drugs can be designed. To reduce MDR, we utilized the tetrahydro-β-carboline (THβC) compound library. We accomplished a three-dimensional quantitative structure-activity relationship (3D-QSAR), scaffold hopping to design a new library of compounds of THβC, and further molecular docking, induced-fit docking (IFD), molecular mechanics energies combined with generalized born and surface area continuum solvation (MM-GBSA), drug-like features, ADMET properties, and density functional theory (DFT) studies were performed. From these studies, the best 3D-QSAR model (r = 0.99, q = 0.92) was found, and the necessity of electrostatic, steric, and hydrophobic field effects were determined that could modulate bioactivity. Moreover, based on electrostatic, steric, and hydrophobic field notations, new THβC derivatives (3409) were designed. These findings might provide new insight for researchers to perform and studies for better antagonists against MDR in treating breast cancer.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2023.2176361DOI Listing

Publication Analysis

Top Keywords

molecular docking
8
electrostatic steric
8
steric hydrophobic
8
hydrophobic field
8
mdr
5
designing tetrahydro-β-carboline-based
4
tetrahydro-β-carboline-based abcg2
4
abcg2 inhibitors
4
inhibitors 3d-qsar
4
3d-qsar molecular
4

Similar Publications

Unlabelled: Mercury pollution is a kind of heavy metal pollution with great harm and strong toxicity which exists worldwide. Some microorganisms can convert highly toxic methylmercury into inorganic mercury compounds with significantly reduced toxicity. This is an effective means of methylmercury pollution remediation.

View Article and Find Full Text PDF

Small Molecular Oligopeptides Adorned with Tryptophan Residues as Potent Antitumor Agents: Design, Synthesis, Bioactivity Assay, Computational Prediction, and Experimental Validation.

J Chem Inf Model

January 2025

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.

Tryptophan participates in important life activities and is involved in various metabolic processes. The indole and aromatic binuclear ring structure in tryptophan can engage in diverse interactions, including π-π, π-alkyl, hydrogen bonding, cation-π, and CH-π interactions with other side chains and protein targets. These interactions offer extensive opportunities for drug development.

View Article and Find Full Text PDF

Background: Breast cancer is a frequently diagnosed malignant disease and the primary cause of mortality among women with cancer worldwide. The therapy options are influenced by the molecular subtype due to the intricate nature of the condition, which consists of various subtypes. By focusing on the activation of receptors, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase can be utilized as an effective drug target for therapeutic purposes of breast cancer.

View Article and Find Full Text PDF

EhVps35, a retromer component, is involved in the recycling of the EhADH and Gal/GalNac virulent proteins of .

Front Parasitol

March 2024

Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico.

The retromer is a highly conserved eukaryotic complex formed by the cargo selective complex (CSC) and the sorting nexin (SNX) dimer subcomplexes. Its function is protein recycling and recovery from the endosomes to conduct the target molecules to the trans-Golgi network or the plasma membrane. The protozoan responsible for human amoebiasis, , exhibits an active membrane movement and voracious phagocytosis, events in which the retromer may be fully involved.

View Article and Find Full Text PDF

Introduction: Schistosomiasis has for many years relied on a single drug, praziquantel (PZQ) for treatment of the disease. Immense efforts have been invested in the discovery of protein kinase (PK) inhibitors; however, given that the majority of PKs are still not targeted by an inhibitor with a useful level of selectivity, there is a compelling need to expand the chemical space available for synthesizing new, potent, and selective PK inhibitors. Small-molecule inhibitors targeting the ATP pocket of the catalytic domain of PKs have the potential to become drugs devoid of (major) side effects, particularly if they bind selectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!