On the basis of our previous research, miR-124 and autophagy have been shown to be associated with depression and antidepressant treatment, respectively. However, whether miR-124 is involved in depressive-like behavior and antidepressant efficacy through regulating autophagy remains poorly understood. The chronic unpredictable mild stress (CUMS) depression model in mice was established, and then intraperitoneal fluoxetine injections (10 mg/kg) were administered for a duration of 4 weeks. The behavioral changes induced by CUMS were evaluated by the tail suspension test, open field test, sucrose preference test, and elevated plus maze test. Quantitative real-time PCR was used to detect expression levels of miR-124 and its three precursor genes in hippocampus of mice. Western blotting was used to detect the expressions of Ezh2 and autophagy proteins (P62, Atg3, Atg7, LC3-I, and LC3- II) in hippocampus of mice. Depression-like behaviors were successfully induced in CUMS models and reversed by SSRI treatments. The expression levels of miR-124 and its precursor gene ( miR-124-3 ) were significantly increased in the hippocampus of CUMS mice, while the expression levels were significantly decreased after 4 weeks of fluoxetine treatment. The mRNA and protein expressions of Ezh2, a validated target of miR-124, were decreased in the hippocampus of CUMS mice, and the fluoxetine treatment could reverse the expressions. A correlation analysis suggested that miR-124 had a significant negative correlation with Ezh2 mRNA expression. The protein levels of LC3-II/I, P62, and Atg7, which were found to be regulated by Ezh2, were increased in the hippocampus of CUMS mice and decreased after fluoxetine treatment. We speculated that autophagy was enhanced in the CUMS model of depression and might be mediated by miR-124 targeting Ezh2.

Download full-text PDF

Source
http://dx.doi.org/10.1097/FBP.0000000000000716DOI Listing

Publication Analysis

Top Keywords

expression levels
12
hippocampus cums
12
cums mice
12
fluoxetine treatment
12
mir-124
8
depressive-like behavior
8
targeting ezh2
8
induced cums
8
levels mir-124
8
hippocampus mice
8

Similar Publications

Dihydromyricetin (Dih), a naturally occurring flavonoid, has been identified to exert a protective effect against ischemia/reperfusion injury. However, the detailed mechanisms remain unclear. Here we investigated the biological role of Dih in preventing hypoxia/reoxygenation (H/R) injury in cardiomyocytes.

View Article and Find Full Text PDF

Barley (Hordeum vulgare L.) is an important cereal crop used in animal feed, beer brewing, and food production. Waterlogging stress is one of the prominent abiotic stresses that has a significant impact on the yield and quality of barley.

View Article and Find Full Text PDF

Exploring the dual roles of sec-dependent effectors from Candidatus Liberibacter asiaticus in immunity of citrus plants.

Plant Cell Rep

January 2025

MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.

The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.

View Article and Find Full Text PDF

An involvement of a new zinc finger protein PbrZFP719 into pear self-incompatibility reaction.

Plant Cell Rep

January 2025

State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.

This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.

View Article and Find Full Text PDF

Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!