The human amniotic membrane dressing has been shown to accelerate the wound healing process in the clinic. In this study, heparin was conjugated to a human Acellular Amniotic Membrane (hAAM) to provide affinity binding sites for immobilizing growth factors. To study the acceleration of the wound healing process, we bound epidermal growth factor and fibroblast growth factor 1 to heparinized hAAMs (GF-Hep-hAAMs). The heparinized hAAMs (Hep-hAAMs) were characterized by toluidine blue staining and infrared spectroscopy. The quality control of hAAM was performed by hematoxylin staining, swelling capacity test and biomechanical evaluation. The cytotoxicity, adhesion, and migration in vitro assays of GF-Hep-hAAMs on L-929 fibroblast cells were also studied by MTT assay, scanning electron microscopy, and scratch assay, respectively. Finally, in vivo skin wound healing study was performed to investigate the wound closure rate, re-epithelization, collagen deposition, and formation of new blood vessels. The results showed that GF-Hep-hAAMs enhance the rate of wound closure and epidermal regeneration in BALB/c mice. In conclusion, GF-Hep-hAAMs could accelerate the wound healing process, significantly in the first week.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.37509DOI Listing

Publication Analysis

Top Keywords

wound healing
20
amniotic membrane
12
healing process
12
acellular amniotic
8
membrane dressing
8
growth factors
8
skin wound
8
accelerate wound
8
growth factor
8
heparinized haams
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!