Non-alcoholic fatty liver disease (NAFLD) is the main cause of chronic liver disease, and its pathological development is closely related to the gut-liver axis. The intestinal barrier, an important component of the gut-liver axis, can prevent gut microbes and endotoxins from entering the liver. Intestinal barrier function is impaired in patients with NAFLD. Baicalein, which is the main flavonoid in Scutellariae Radix, can improve NAFLD. However, whether baicalein alleviates NAFLD by ameliorating intestinal barrier dysfunction remains unclear. In this study, a methionine-choline deficient (MCD) diet-induced NAFLD mouse model is used. The effects of baicalein on lipid accumulation, inflammation and the intestinal barrier in MCD-fed mice were evaluated by detecting blood lipid levels, lipid accumulation, liver pathological changes, inflammatory factors, inflammatory signaling pathways, the three main short-chain fatty acids (acetate, propionate and butyrate), intestinal permeability and intestinal tight junction protein expression. Compared with the MCD-only group, baicalein intake decreased the serum and liver lipid levels. Moreover, the accumulation of lipid droplets and steatosis in the liver were also alleviated; all these results demonstrated that baicalein could alleviate NAFLD. Meanwhile, the levels of inflammatory cytokines decreased in the baicalein group. Further investigation of the mucosal permeability to 4 kDa fluorescein isothiocyanate-dextran, concentrations of short-chain fatty acids in feces, and the expression of intestinal zonula occluden 1 and claudin-1 indicated that a baicalein diet could decrease the intestinal permeability caused by a MCD diet. Moreover, the protein levels of p-NF-κB p65 and the ratio of p-NF-κB p65/NF-κB p65 increased, and IκB-α and PPARα decreased in NAFLD mice, while the administration of baicalein could alleviate these changes. The above results indicated that the mechanism of baicalein in the alleviation of NAFLD lies in the regulation of the intestinal barrier.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2fo03015bDOI Listing

Publication Analysis

Top Keywords

intestinal barrier
24
liver disease
12
baicalein
10
intestinal
10
baicalein alleviates
8
non-alcoholic fatty
8
fatty liver
8
ameliorating intestinal
8
barrier dysfunction
8
nafld
8

Similar Publications

Progressive systemic inflammation precedes decompensation in compensated cirrhosis.

JHEP Rep

February 2025

Department of Gastroenterology and Hepatology, Hospital Universitario Ramón y Cajal, Instituto Ramon y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Madrid, Spain.

Background & Aims: Systemic inflammation is a driver of decompensation in cirrhosis with unclear relevance in the compensated stage. We evaluated inflammation and bacterial translocation markers in compensated cirrhosis and their dynamics in relation to the first decompensation.

Methods: This study is nested within the PREDESCI trial, which investigated non-selective beta-blockers for preventing decompensation in compensated cirrhosis and clinically significant portal hypertension (CSPH: hepatic venous pressure gradient ≥10 mmHg).

View Article and Find Full Text PDF

The gut barrier encompasses several interactive, physical, and functional components, such as the gut microbiota, the mucus layer, the epithelial layer and the gut mucosal immunity. All these contribute to homeostasis in a well-regulated manner. Nevertheless, this frail balance might be disrupted for instance by westernized dietary habits, infections, pollution or exposure to antibiotics, thus diminishing protective immunity and leading to the onset of chronic diseases.

View Article and Find Full Text PDF

The aim of this study is to investigate the protective potential of IM57, IR51, and IR62 strains, isolated from infant feces, and their mixture against inflammatory bowel disease (IBD). The strains exhibited robust antioxidant activities and anti-inflammatory properties in RAW 264.7 cells.

View Article and Find Full Text PDF

Xylooligosaccharide and Akkermansia muciniphila synergistically ameliorate insulin resistance by reshaping gut microbiota, improving intestinal barrier and regulating NKG2D/NKG2DL signaling in gestational diabetes mellitus mice.

Food Res Int

February 2025

Department of Nutrition and Food Hygiene, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1026. Shatai South Road, Guangzhou 510515, Guangdong, PR China; Department of Clinical Nutrition, Nanfang Hospital, Southern Medical University, 1838. Guangzhou Avenue North, Guangzhou 510515, Guangdong, PR China. Electronic address:

Xylooligosaccharides (XOS) ameliorate insulin resistance (IR) in gestational diabetes mellitus (GDM) probably by propagating Akkermansia muciniphila (Akk). This study aimed to investigate the effects and mechanisms of XOS, Akk and combination on IR in GDM mice/pseudo-germ-free (PGF) mice. Female mice were fed with AIN-93 (n = 19) and high fat diet (HFD) (n = 206).

View Article and Find Full Text PDF

Long-term effects of Nε-carboxymethyllysine intake on intestinal barrier permeability: Associations with gut microbiota and bile acids.

Food Res Int

February 2025

Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, PR China. Electronic address:

Advanced glycation end products (AGEs) in processed foods are closely linked to intestinal injury. However, the long-term effects of exposure to free Nɛ-carboxymethyl lysine (CML), a prevalent AGE molecule, on intestinal barrier integrity have been rarely evaluated. This study investigated the temporal effects of CML exposure on intestinal barrier permeability in C57BL/6N mice at diet-related doses over 12, 14, and 16 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!