Among monoaromatic hydrocarbons, xylenes, especially the and isomers, are the least biodegradable compounds in oxygen-limited subsurface environments. Although much knowledge has been gained regarding the anaerobic degradation of xylene isomers in the past 2 decades, the diversity of those bacteria which are able to degrade them under microaerobic conditions is still unknown. To overcome this limitation, aerobic and microaerobic xylene-degrading enrichment cultures were established using groundwater taken from a xylene-contaminated site, and the associated bacterial communities were investigated using a polyphasic approach. Our results show that the xylene-degrading bacterial communities were distinctly different between aerobic and microaerobic enrichment conditions. Although members of the genus were the most dominant in both types of enrichments, the and lineages were only abundant under microaerobic conditions, while entirely replaced them under aerobic conditions. Analysis of a metagenome-assembled genome of a -related bacterium revealed aromatic hydrocarbon-degrading ability by identifying two catechol 2,3-dioxygenases in the genome. Moreover, phylogenetic analysis indicated that both enzymes belonged to a newly defined subfamily of type I.2 extradiol dioxygenases (EDOs). Aerobic and microaerobic xylene-degradation experiments were conducted on strains sp. AS12 and sp. MAP12, isolated from the aerobic and microaerobic enrichments, respectively. The obtained results, together with the whole-genome sequence data of the strains, confirmed the observation that members of the genus are excellent aromatic hydrocarbon degraders but effective only under clear aerobic conditions. Overall, it was concluded that the observed differences between the bacterial communities of aerobic and microaerobic xylene-degrading enrichments were driven primarily by (i) the method of aromatic ring activation (monooxygenation vs dioxygenation), (ii) the type of EDO enzymes, and (iii) the ability of degraders to respire utilizing nitrate.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.2c09283DOI Listing

Publication Analysis

Top Keywords

aerobic microaerobic
24
bacterial communities
16
microaerobic xylene-degrading
12
aerobic
8
microaerobic
8
xylene-degrading enrichment
8
microaerobic conditions
8
members genus
8
aerobic conditions
8
conditions
5

Similar Publications

Thermophilic microbial communities growing in low-oxygen environments often contain early-evolved archaea and bacteria, which hold clues regarding mechanisms of cellular respiration relevant to early life. Here, we conducted replicate metagenomic, metatranscriptomic, microscopic, and geochemical analyses on two hyperthermophilic (82-84 °C) filamentous microbial communities (Conch and Octopus Springs, Yellowstone National Park, WY) to understand the role of oxygen, sulfur, and arsenic in energy conservation and community composition. We report that hyperthermophiles within the Aquificota (Thermocrinis), Pyropristinus (Caldipriscus), and Thermoproteota (Pyrobaculum) are abundant in both communities; however, higher oxygen results in a greater diversity of aerobic heterotrophs.

View Article and Find Full Text PDF

Microbial reduction of selenium oxyanions, highly soluble, mobile and toxic inorganic selenium compounds, to insoluble selenium nanoparticles (Se NPs) is a widely spread phenomenon which is of geochemical, environmental and biotechnological importance. While selenite bioreduction is known for a wide variety of microorganisms, selenate bioreduction is not so common and has mostly been documented for anaerobes, with merely a few reported cases related to aerobic or microaerobic conditions. In some biogenic Se NPs of microbial origin, the presence of sulfur was detected together with selenium in Se NPs, particularly when increased concentrations of sulfate were present in the medium.

View Article and Find Full Text PDF
Article Synopsis
  • * From hybrid maize fields with pH 5.50, researchers identified 61 K-PNSB isolates, which could dissolve between 56.2 and 98.6 mg/L of potassium, with three promising isolates (M-Sl-09, M-So-11, M-So-14) showing specific potassium dissolution ranges of 48.1-49.7 mg/L.
  • * Along with potassium solubilization, these three isolates also showed the ability to fix nitrogen, solubilize calcium-phosphate,
View Article and Find Full Text PDF

Nicotinamide adenine dinucleotide (NAD), its precursors, and its derivatives (collectively NADome) play a crucial role in cellular processes and maintain redox homeostasis. Understanding the dynamics of these metabolic pools and redox reactions can provide valuable insights into metabolic functions, especially cellular regulation and stress response mechanisms. The accurate quantification of these metabolites is challenging due to the interconversion between the redox forms.

View Article and Find Full Text PDF

A respiro-fermentative strategy to survive nanoxia in Acidobacterium capsulatum.

FEMS Microbiol Ecol

November 2024

Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030 Vienna, Austria.

Microbial soil habitats are characterized by rapid shifts in substrate and nutrient availabilities, as well as chemical and physical parameters. One such parameter that can vary in soil is oxygen; thus, microbial survival is dependent on adaptation to this substrate. To better understand the metabolic abilities and adaptive strategies to oxygen-deprived environments, we combined genomics with transcriptomics of a model organism, Acidobacterium capsulatum, to explore the effect of decreasing, environmentally relevant oxygen concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!