Objective: Air pollution is today fully acknowledged to be a significant public health problem. Rapid urbanization exposed us to a variety of unhealthy ambient air pollutants at high concentrations. The emergence of airborne ultrafine particles has added an additional dimension to this already complex problem of air pollution. The skin has different functions, one of them being the protection against the deleterious effect of external agents. The aim of this study is to evaluate the impact of airborne ultrafine particles (UFP) pollution on skin aging and on keratinocyte differentiation.
Methods: Ex vivo human skin biopsies and cultured keratinocytes stem cells (KSC) were submitted to diesel exhaust-derived UFP. Reactive oxygen species (ROS) production was assessed with the MitoSOX™ probe. Keratinocyte stemness potential was evaluated by the immunodetection of keratin 15 (K15) and p63 (∆N isoforms). Effect of UFP on the epithelial niche maintenance was evaluated by immunodetection of Sox9. Reconstructed epidermis model was used to assess the impact of UFP on keratinocyte differentiation and aging.
Results: UFP exposure induced ROS production and disturbed K15, ∆Np63 and Sox9 expression in KSC or ex vivo skin. Finally, investigations on reconstructed epidermis revealed a phenotype marked by impaired keratinocyte differentiation.
Conclusion: These results indicate that UFP pollution is a potent extrinsic factor of skin aging, affecting the keratinocyte stem cell potential and the skin renewal process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ics.12833 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!