The rapid emergence of drug-resistant bacteria has attracted great attention to exploring advanced antibacterial methods. However, single-modal antibacterial therapy cannot easily eliminate drug-resistant bacteria completely due to its low efficacy. Therefore, it is essential to achieve multi-modal antibacterial therapy effectively. Herein, a dual-modal ROS generator was designed based on photosensitive PDA-MnO@Ce6/liposome (PMCL) nanozymes for synergistic chemo-photodynamic therapy. PMCL nanozymes adhere to bacteria through liposome-membrane fusion. Meanwhile, PMCL catalyzes endogenous hydrogen peroxide (HO) to generate hydroxyl radicals (˙OH) and singlet oxygen (O) under laser irradiation. Furthermore, the photothermal effect can accelerate the generation of ROS. Based on dual-enzyme activities (mimicking peroxidase and catalase) and photodynamic properties, PMCL achieves powerful antibacterial efficacy and mature bacterial biofilm eradication. With the synergistic chemo-photodynamic effects, bacterial populations decrease by >99.76% against Gram-positive and Gram-negative . Notably, the synergistic antibacterial properties of PMCL nanozymes are further explored using a mouse wound model of infection. This work fabricated an efficient dual-modal ROS generator to kill bacteria, further providing a new strategy for treating wound infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2bm01939f | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
Pulmonary metastasis represents one of the most prevalent forms of metastasis in advanced melanoma, with mortality rates reaching 70%. Current treatments including chemotherapy, targeted therapy, and immunotherapy frequently exhibit limited efficacy or present high costs. To address these clinical needs, this study presents a biomimetic drug delivery system (Ce6-pTP-CsA) utilizing cryoshocked adipocytes (CsA) encapsulating the prodrug triptolide palmitate (pTP) and the photosensitizer Ce6, exploiting the characteristic of tumor cells to recruit and lipolyze adipocytes for energy.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:
Triple-negative breast cancer (TNBC) with highly malignant and aggressive, still faces challenges in treatment due to the single treatment and side effects. It is urgent to develop an advanced theranostic platform against TNBC. Herein, an "all-in-one" nano-system Au/Cu nanodots/doxorubicin@nanospheres (Au/CuNDs/DOX@NS) with dual-responsive properties was designed for dual-mode imaging-guided combination treatment of TNBC.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
Excessive reactive oxygen and nitrogen species (RONS) accumulation in joints are significant variables that affect the course of rheumatoid arthritis (RA). Scavenging of RONS to remodel macrophage homeostasis is a potentially powerful treatment for RA. Here, a visualized "nanosweeper" by functionalizing ultrasmall Gd/FeO nanoparticles with thiol-polyethylene glycol-phosphoric acid and 2-(3-(2-aminophenyl)ureido) ethyl methacrylate hydrochloride (APUEMA), namely GIA NPs, can simultaneously scavenge both nitric oxide (NO) and reactive oxygen species (ROS), as well as enhance magnetic resonance imaging (MRI) for the diagnosis and therapy of RA.
View Article and Find Full Text PDFJ Drug Target
December 2024
Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Recent advancements in multifunctional nanomaterials for cancer therapy have highlighted porphyrin-based metal-organic frameworks (MOFs) as promising candidates due to their unique properties and versatile applications. This overview focuses on the use of porphyrin-based MOFs for combined photodynamic therapy (PDT) and photothermal therapy (PTT) in cancer treatment. Porphyrin-based MOFs offer high porosity, tuneable structures, and excellent stability, making them ideal for drug delivery and therapeutic applications.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China.
Targeted Alpha therapy (TAT) has promising application prospects in tumor therapy. It is very appealing to design alpha-emitting radiopharmaceuticals that can modulate the immune microenvironment to overcome the limitations of immunotherapy. Herein, Mg/Al layered double hydroxide nanomaterials (LDH) are utilized to load the alpha-emitting nuclide Radium-223 (Ra), achieving precise delivery of Ra to the tumor microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!