Following the passage of a tropical cyclone (TC) the changes in temperature, salinity, nutrient concentration, water clarity, pigments and phytoplankton taxa were assessed at 42 stations from eight sites ranging from the open ocean, through the coastal zone and into estuaries. The impacts of the TC were estimated relative to the long-term average (LTA) conditions as well as before and after the TC. Over all sites the most consistent environmental impacts associated with TCs were an average 41% increase in turbidity, a 13% decline in salinity and a 2% decline in temperature relative to the LTA. In the open ocean, the nutrient concentrations, cyanobacteria and picoeukaryote abundances increased at depths between 100 and 150 m for up to 3 months following a TC. While at the riverine end of coastal estuaries, the predominate short-term response was a strong decline in salinity and phytoplankton suggesting these impacts were initially dominated by advection. The more intermediate coastal water-bodies generally experienced declines in salinity, significant reductions in water clarity, plus significant increases in nutrient concentrations and phytoplankton abundance. These intermediate waters typically developed dinoflagellate, diatom or cryptophyte blooms that elevated phytoplankton biomass for 1-3 months following a TC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9897026 | PMC |
http://dx.doi.org/10.1093/plankt/fbac062 | DOI Listing |
Sci Total Environ
January 2025
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
The West Antarctic Peninsula (WAP) is a hotspot of climate warming, evidencing glacier retreat and a decrease in the fast-ice duration. This study provides a > 30-y time-series (1987-2022) on annual and seasonal air temperatures in Potter Cove (Isla 25 de Mayo/King George Island). It investigates the interaction between warming, glacial melt, fast-ice and the underwater conditions (light, salinity, temperature, turbidity) over a period of 10 years along the fjord axis (2010-2019), and for the first time provides a unique continuous underwater irradiance time series over 5 years (2014-2018).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
Surface fogging affects the light transmittance of various transparent materials and poses potential safety hazards. Superhydrophilic TiO surfaces can effectively prevent fogging by promoting continuous water film formation; however, they often struggle to maintain stable hydrophilicity and adhesion on plastic films. Self-cleaning and antifogging coatings on plastic substrates are crucial for applications requiring long-term clarity and minimal maintenance costs.
View Article and Find Full Text PDFBMC Oral Health
December 2024
Center of Excellence on Oral Microbiology and Immunology, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Henri Dunant Rd, Bangkok, 10330, Thailand.
Background: Microorganisms in dental unit water (DUW) play a significant role in dental bioaerosols. If the methods used to decontaminate DUW also help improve air quality in dental clinics is worth exploring. In this study, we aim to identify the source of bacteria in dental bioaerosols and investigate the impact of waterline disinfectants on the quantity and composition of bacteria in DUW and bioaerosols.
View Article and Find Full Text PDFEcol Lett
December 2024
Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA.
Identifying the scaling rules describing ecological patterns across time and space is a central challenge in ecology. Taylor's law of fluctuation scaling, which states that the variance of a population's size or density is proportional to a positive power of the mean size or density, has been widely observed in population dynamics and characterizes variability in multiple scientific domains. However, it is unclear if this phenomenon accurately describes ecological patterns across many orders of magnitude in time, and therefore links otherwise disparate observations.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
U.S. Geological Survey, U.S. Environmental Protection Agency Chesapeake Bay Program, 1750 Forest Drive, Suite 130, Annapolis, Maryland 21401, United States.
Many coastal ecosystems have suffered from cultural eutrophication and dead zones. In the Chesapeake Bay, water quality degradation is manifested in low dissolved oxygen, poor water clarity, and decreased submerged aquatic vegetation acreage. This research combines long-term monitoring data, science-based assessment methods, and novel data analysis approaches (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!