The accumulation of anthocyanins is a well-known response to abiotic stresses in many plant species. However, the effects of anthocyanin accumulation on light absorbance and photosynthesis are unknown . Here, we addressed this question using a promoter replacement line of tomato constitutively expressing a MYB transcription factor () that leads to anthocyanin accumulation. -overexpressing plants displayed traits associated with shade avoidance response: thinner leaves, lower seed germination rate, suppressed side branching, increased chlorophyll concentration, and lower photosynthesis rates than the wild type. Anthocyanin-rich leaves exhibited higher absorbance of light in the blue and red ends of the spectrum, while higher anthocyanin content in leaves provided photoprotection to high irradiance. Analyses of gene expression and primary metabolites content showed that anthocyanin accumulation produces a reconfiguration of transcriptional and metabolic networks that is consistent with, but not identical to those described for the shade avoidance response Our results provide novel insights about how anthocyanins accumulation affects the trade-off between photoprotection and growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9896602 | PMC |
http://dx.doi.org/10.1093/hr/uhac254 | DOI Listing |
BMC Genom Data
January 2025
Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang, 050000, China.
Background: Wheat seeds display different colors due to the types and contents of anthocyanins, which is closely related to anthocyanin metabolism. In this study, a transcriptomic and metabolomic analysis between white and purple color wheat pericarp aimed to explore some key genes and metabolites involved in anthocyanin metabolism.
Results: Two wheat cultivars, a white seed cultivar Shiluan02-1 and purple seed cultivar Hengzi151 were used to identify the variations in differentially expressed genes (DEGs) and differentially accumulated flavonoids (DAFs).
Int J Biol Macromol
January 2025
College of Landscape Architecture and Art, Northwest A & F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A & F University, Yangling, Shaanxi 712100, China. Electronic address:
Glycosylation modification of anthocyanins is important as a preceding step to acylation modification. Cyanidin-3-O-(p-coumaroyl)glucoside-5-O-malonylglucoside (Cy3pCG5MaG) is one of the major anthocyanin substances in blue-flowered grape hyacinth, but its 5-position glycosylation is unknown. Here, we identified two glycoside hydrolase family 1 genes, MaAGGT1 and MaAGGT5, which use acyl-glucose as a donor and are involved in the glycosylation modification of anthocyanins in grape hyacinth.
View Article and Find Full Text PDFHortic Res
January 2025
Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, No. 247 Wusi Road, Gulou District, Fuzhou 350003, China.
Resveratrol is an important phytoalexin that adapts to and responds to stressful conditions and plays various roles in health and medical therapies. However, it is only found in a limited number of plant species in low concentrations, which hinders its development and utilization. Chalcone synthase (CHS) and stilbene synthase (STS) catalyze the same substrates to produce flavonoids and resveratrol, respectively.
View Article and Find Full Text PDFPlant Sci
January 2025
Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, AnHui Agricultural University, HeFei 230036, PR China. Electronic address:
Trichome development and anthocyanin accumulation are regulated by a complex regulatory network, the MBW complexes consist of MYB, bHLH, and WD40 transcription factors. In this study, two sequences, named PaTTG1.1, and PaTTG1.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China. Electronic address:
The pigments present in the fibers of naturally colored cotton provide excellent antibacterial and environmentally friendly properties, making these colored fibers increasingly favored by the textile industry and consumers. Proanthocyanidins (PAs), the critical pigments responsible for the color of brown cotton fiber, are produced on the endoplasmic reticulum and subsequently transported to the vacuole for polymerization and/or storage. Previous studies have identified GhTT12 as a potential transmembrane transporter of PAs in Gossypium hirsutum, with GhTT12 being a homolog of Arabidopsis Transparent Testa 12 (TT12).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!