A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep learning approach to detection of colonoscopic information from unstructured reports. | LitMetric

Deep learning approach to detection of colonoscopic information from unstructured reports.

BMC Med Inform Decis Mak

Department of Artificial Intelligence Convergence, Kangwon National University, 1 Kangwondaehak-Gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.

Published: February 2023

AI Article Synopsis

  • - Colorectal cancer is a major cause of cancer deaths, and while screening methods like colonoscopy can help detect it, most reports are written in unstructured text, limiting their utility.
  • - The study developed deep learning-based natural language processing (NLP) models using over 280,000 colonoscopy reports, comparing models such as LSTM and BioBERT to identify the best performer for extracting relevant information.
  • - The selected bidirectional LSTM model showed strong performance with high F1 scores across various colonoscopy report labels, indicating its potential for practical applications in improving colorectal cancer screening and follow-up.

Article Abstract

Background: Colorectal cancer is a leading cause of cancer deaths. Several screening tests, such as colonoscopy, can be used to find polyps or colorectal cancer. Colonoscopy reports are often written in unstructured narrative text. The information embedded in the reports can be used for various purposes, including colorectal cancer risk prediction, follow-up recommendation, and quality measurement. However, the availability and accessibility of unstructured text data are still insufficient despite the large amounts of accumulated data. We aimed to develop and apply deep learning-based natural language processing (NLP) methods to detect colonoscopic information.

Methods: This study applied several deep learning-based NLP models to colonoscopy reports. Approximately 280,668 colonoscopy reports were extracted from the clinical data warehouse of Samsung Medical Center. For 5,000 reports, procedural information and colonoscopic findings were manually annotated with 17 labels. We compared the long short-term memory (LSTM) and BioBERT model to select the one with the best performance for colonoscopy reports, which was the bidirectional LSTM with conditional random fields. Then, we applied pre-trained word embedding using large unlabeled data (280,668 reports) to the selected model.

Results: The NLP model with pre-trained word embedding performed better for most labels than the model with one-hot encoding. The F1 scores for colonoscopic findings were: 0.9564 for lesions, 0.9722 for locations, 0.9809 for shapes, 0.9720 for colors, 0.9862 for sizes, and 0.9717 for numbers.

Conclusions: This study applied deep learning-based clinical NLP models to extract meaningful information from colonoscopy reports. The method in this study achieved promising results that demonstrate it can be applied to various practical purposes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903463PMC
http://dx.doi.org/10.1186/s12911-023-02121-7DOI Listing

Publication Analysis

Top Keywords

colonoscopy reports
20
colorectal cancer
12
deep learning-based
12
reports
9
study applied
8
applied deep
8
nlp models
8
colonoscopic findings
8
pre-trained word
8
word embedding
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: