Background: Gadolinium enhancement of spinal nerve roots on magnetic resonance imaging (MRI) has rarely been reported in spinal dural arteriovenous fistula (SDAVF). Nerve root enhancement and cerebrospinal fluid (CSF) pleocytosis can be deceptive and lead to a misdiagnosis of myeloradiculitis. We report a patient who was initially diagnosed with neurosarcoid myeloradiculitis due to spinal nerve root enhancement, mildly inflammatory cerebrospinal fluid, and pulmonary granulomas, who ultimately was found to have an extensive symptomatic SDAVF.
Case Presentation: A 52-year-old woman presented with a longitudinally extensive spinal cord lesion with associated gadolinium enhancement of the cord and cauda equina nerve roots, and mild lymphocytic pleocytosis. Pulmonary lymph node biopsy revealed non-caseating granulomas and neurosarcoid myeloradiculitis was suspected. She had rapid and profound clinical deterioration after a single dose of steroids. Further work-up with spinal angiography revealed a thoracic SDAVF, which was surgically ligated leading to clinical improvement.
Conclusions: This case highlights an unexpected presentation of SDAVF with nerve root enhancement and concurrent pulmonary non-caseating granulomas, leading to an initial misdiagnosis with neurosarcoidosis. Nerve root enhancement has only rarely been described in cases of SDAVF; however, as this case highlights, it is an important consideration in the differential diagnosis of non-inflammatory causes of longitudinally extensive myeloradiculopathy with nerve root enhancement. This point is highly salient due to the importance of avoiding misdiagnosis of SDAVF, as interventions such as steroids or epidural injections used to treat inflammatory or infiltrative mimics may worsen symptoms in SDAVF. We review the presentation, diagnosis, and management of SDAVF as well as a proposed diagnostic approach to differentiating SDAVF from inflammatory myeloradiculitis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9903490 | PMC |
http://dx.doi.org/10.1186/s12883-023-03097-7 | DOI Listing |
Childs Nerv Syst
January 2025
Division of Neurosurgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
Purpose: We sought to evaluate the incidence, natural history, and management of cystic spinal lesions following myelomeningocele/myeloschisis closure.
Methods: We performed a single-center retrospective review of all patients who underwent myelomeningocele/myeloschisis closure from 2013 to 2018 with follow-up to 5 years old.
Results: We analyzed 100 fetal repairs and 81 postnatal closures from 305 total surgeries.
Sci Rep
January 2025
Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Xuhui District, Shanghai, 200233, People's Republic of China.
Regional anesthesia is a popular method for surgical anesthesia in clavicular surgery. Selective blocking of the cervical 3, 4, and 5 nerve roots shows promise in clavicle surgery, with its fast onset, good anesthesia and less complications, necessitating evaluation of its impact on diaphragmatic function. The purpose of this study is to examine the safety of C3, 4, and 5 nerve root block for its application in clavicle surgery.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Division of Neurosurgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wang Lang Road, Bangkok Noi, 10700, Bangkok, Thailand.
Treatment of neuropathic pain in patients with spinal cord injury (SCI) and cauda equina injury (CEI) remains challenging. Dorsal root entry zone lesioning (DREZL) or DREZotomy is a viable surgical option for refractory cases. This study aimed to compare DREZL surgical outcomes between patients with SCI and those with CEI and to identify predictors of postoperative pain relief.
View Article and Find Full Text PDFCell Mol Neurobiol
January 2025
Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, Trieste, TS, Italy.
In clinics, physical injuries to the spinal cord cause a temporary motor areflexia below lesion, known as spinal shock. This topic is still underexplored due to the lack of preclinical spinal cord injury (SCI) models that do not use anesthesia, which would affect spinal excitability. Our innovative design considered a custom-made micro impactor that provides localized and calibrated strikes to the ventral surface of the thoracic spinal cord of the entire CNS isolated from neonatal rats.
View Article and Find Full Text PDFACS Nano
January 2025
Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, P. R. China.
Deciphering neuronal circuits is pivotal for deepening our understanding of neuronal functions and advancing treatments for neurological disorders. Conventional neuronal tracers suffer from restrictions such as limited penetration depth, high immunogenicity, and inadequacy for long-term and imaging. In this context, we introduce an aggregation-induced emission luminogen (AIEgen), MeOTFVP, engineered for enhanced neuronal tracing and imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!