The beta‑site amyloid precursor protein (APP) cleaving enzyme (BACE1) was discovered due to its "amyloidogenic" activity which contributes to the production of amyloid-beta (Aβ) peptides. However, BACE1 also possesses an "amyloidolytic" activity, whereby it degrades longer Aβ peptides into a non‑toxic Aβ34 intermediate. Here, we examine conditions that shift the equilibrium between BACE1 amyloidogenic and amyloidolytic activities by altering BACE1/APP ratios. In Alzheimer disease brain tissue, we found an association between elevated levels of BACE1 and Aβ34. In mice, the deletion of one BACE1 gene copy reduced BACE1 amyloidolytic activity by ~ 50%. In cells, a stepwise increase of BACE1 but not APP expression promoted amyloidolytic cleavage resulting in dose-dependently increased Aβ34 levels. At the cellular level, a mislocalization of surplus BACE1 caused a reduction in Aβ34 levels. To align the role of γ-secretase in this pathway, we silenced Presenilin (PS) expression and identified PS2-γ-secretase as the main γ-secretase that generates Aβ40 and Aβ42 peptides serving as substrates for BACE1's amyloidolytic cleavage to generate Aβ34.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9905473PMC
http://dx.doi.org/10.1038/s41598-023-28846-zDOI Listing

Publication Analysis

Top Keywords

bace1
9
aβ peptides
8
amyloidolytic cleavage
8
aβ34 levels
8
aβ34
5
mechanisms amyloid-β34
4
amyloid-β34 generation
4
generation indicate
4
indicate pivotal
4
pivotal role
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!