Chiral covalent organic framework incorporated organic polymer monolithic capillary column for enantioseparations.

J Sep Sci

College of Materials and Chemical Engineering, Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, Fujian Engineering and Research Center of New Chinese Lacquer Materials, Minjiang University, Fuzhou, P. R. China.

Published: April 2023

A chiral covalent organic framework was synthesized, characterized, and incorporated into organic polymer monolithic capillary columns to provide chiral stationary phases for enantioseparations. The prepared monolithic capillary columns were characterized by scanning electron microscopy and elemental analysis. To obtain better enantioseparations, the columns' preparation conditions, and enantioseparation conditions were optimized. Baseline resolutions of several chiral compounds were obtained with good reproducibility and stability. Furthermore, the mechanism of chiral recognition was investigated using molecular docking with AutoDock. Docking results showed that the enantioselectivity factor rather than resolution is correlated with the binding free energy difference between enantiomers with the chiral covalent organic framework. And abundant acetoxy and nitrile groups as well as benzene rings in the chiral covalent organic framework are responsible for the enantioseparation ability of the chiral monolithic capillary columns.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.202201039DOI Listing

Publication Analysis

Top Keywords

chiral covalent
16
covalent organic
16
organic framework
16
monolithic capillary
16
capillary columns
12
chiral
8
incorporated organic
8
organic polymer
8
polymer monolithic
8
organic
6

Similar Publications

Circularly polarized luminescence (CPL) film attracted considerable attention in information storage and encryption, three-dimensional display, and chiral recognition. However, due to the limited molecular mobility within thin film, achieving a high asymmetry factor and non-contact modulation of CPL remain challenging. In this work, color-switchable homochiral CPL films with high luminescence asymmetry factor (glum~0.

View Article and Find Full Text PDF

Two-dimensional (2D) chiral hybrid perovskites A2PbI4 (A: chiral organic ion) enable chirality controlled optoelectronic and spin-based properties. A+ organic sublattice induces chirality into the semiconducting [PbI4]2- inorganic sublattice through non-covalent interactions at organic-inorganic interface. Often, the A+ cations in the lattice have different orientations, leading to asymmetry in the non-covalent interactions.

View Article and Find Full Text PDF

Coimmobilized Dual Enzymes in a Continuous Flow Reactor for the Efficient Synthesis of Optically Pure γ/δ-Lactones.

ACS Appl Mater Interfaces

December 2024

State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China.

Enzyme catalysis is a promising method for producing chiral chemicals with high stereoselectivity under mild conditions. However, the traditional batch reaction suffers from low enzyme stability, low cofactor recycling, and poor enzyme reusability. Here, we present a continuous-flow method using coimmobilized dual enzymes for the synthesis of chiral γ-/δ-lactones, which are widely used in fragrances and flavors.

View Article and Find Full Text PDF

Non-covalent organocatalyzed enantioselective cyclization reactions of α,β-unsaturated imines.

Beilstein J Org Chem

December 2024

Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá (IRYCIS), 28805 Madrid, Spain.

Asymmetric cycloaddition is a straightforward strategy which enables the synthesis of structurally distinct cyclic derivatives which are difficult to access by other methodologies, using an efficient and atom-economical path from simple precursors. In recent years several asymmetric catalytic cyclization strategies have been accomplished for the construction of -heterocycles using various catalytic systems such as chiral metal catalysts, chiral Lewis acids or chiral organocatalysts. This review presents an overview of the recent advances in enantioselective cyclization reactions of 1-azadienes catalyzed by non-covalent organocatalysts.

View Article and Find Full Text PDF

New Concept on the Generation and Regulation of Circularly Polarized Luminescence.

Chemistry

December 2024

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.

Circularly polarized luminescence (CPL) has attracted tremendous attention because of its significant application prospect across multiple fields of three-dimensional display, data storage, and information encryption. Chirality and luminescence are two necessary prerequisites for the generation of CPL. However, controlling these two factors simultaneously in a rational manner remains a challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!