The aim of this study was to separate and purify recombinant β-glucosidase (GLEGB) with elastin-like polypeptide (ELP) and graphene-binding peptide (GB) from cell lysis solution by foam separation and further purification. The study of foam property of GLEGB cell lysis solution indicated that it had excellent foaming property and foam stability, which was suitable for foam separation. This could be due to the GB tag with hydrophobicity, which made the recombinant β-glucosidase with GB preferentially adsorb on the surface of bubbles. At optimum operating conditions of foam separation, the enzyme activity recovery of GLEGB could reach 95.63 ± 1.0%. The foam solution of GLEGB was further purified based on the thermally responsive property of the ELP tag, and the purification fold of GLEGB could reach 29.6 ± 0.5 at the optimum operating conditions. The prominent purification effect indicates that this technique is a simple and efficient technique for the separation and purification of recombinant enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.2c07405DOI Listing

Publication Analysis

Top Keywords

separation purification
16
foam separation
16
recombinant β-glucosidase
12
cell lysis
12
lysis solution
12
purification recombinant
8
thermally responsive
8
responsive property
8
solution foam
8
optimum operating
8

Similar Publications

Identification and Genome Sequencing of Novel Virulent Strains of pv. Causing Rice Bacterial Blight in Zhejiang, China.

Pathogens

December 2024

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310000, China.

pv. () is the causative agent of rice bacterial blight (RBB), resulting in substantial harvest losses and posing a challenge to maintaining a stable global supply. In this study, strains isolated from Shaoxing, Quzhou, and Taizhou, where RBB occurred most frequently in Zhejiang Province in 2019, were selected as the subjects of research.

View Article and Find Full Text PDF

Porcine stool-associated RNA virus (Posavirus) is an unclassified virus with sequence similarity to viruses in the order of Picornaviridae. In China, lineage 1 Posavirus (Posavirus 1) has been circulating in the field since its initial emergence in 2014 however no other lineages have been reported. To investigate the genetic diversity of Posavirus in China, 1200 diarrheic samples were collected from pigs in China.

View Article and Find Full Text PDF

Background: Cardiovascular diseases constitute one of the leading causes of morbidity and mortality worldwide. Herbal medicines represent viable alternatives to the synthetic drugs currently employed in the control of hypertension. This study aimed to isolate and identify the chemical markers of and to investigate the antihypertensive and anti-matrix metalloproteinase (MMP2) activities of an aqueous extract of the leaves.

View Article and Find Full Text PDF

The increasing demand for zinc resources and the declining availability of sulfide zinc ore reserves have made the efficient utilization of zinc oxide a topic of considerable interest. In this study, a ternary composite collector ABN (Al-BHA-NaOL system) was applied to the direct flotation of smithsonite. Micro-flotation studies showed that at pH 9, ABN exhibited better adsorption on smithsonite, achieving a recovery rate of 80.

View Article and Find Full Text PDF

Antifungal Properties of Bioactive Compounds Isolated from Supercritical Carbon Dioxide Extract.

Molecules

December 2024

Department of Food Chemistry (170B), Institute of Food Chemistry, University of Hohenheim, Garbenstraβe 28, D-70599 Stuttgart, Germany.

The exploration of natural antifungal substances from algal origins is significant due to the increasing resistance of pathogens to conventional antifungal agents and the growing consumer demand for natural products. This manuscript represents the inaugural investigation into the antifungal attributes of bioactive compounds extracted from via supercritical carbon dioxide (scCO) extraction utilizing contemporary countercurrent chromatography (CCC). In aligning with the prospective utilization of this extract within the agricultural sector, this study also serves as the preliminary report demonstrating the capability of scCO extract to enhance the activity of plant resistance enzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!