Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of this study was to separate and purify recombinant β-glucosidase (GLEGB) with elastin-like polypeptide (ELP) and graphene-binding peptide (GB) from cell lysis solution by foam separation and further purification. The study of foam property of GLEGB cell lysis solution indicated that it had excellent foaming property and foam stability, which was suitable for foam separation. This could be due to the GB tag with hydrophobicity, which made the recombinant β-glucosidase with GB preferentially adsorb on the surface of bubbles. At optimum operating conditions of foam separation, the enzyme activity recovery of GLEGB could reach 95.63 ± 1.0%. The foam solution of GLEGB was further purified based on the thermally responsive property of the ELP tag, and the purification fold of GLEGB could reach 29.6 ± 0.5 at the optimum operating conditions. The prominent purification effect indicates that this technique is a simple and efficient technique for the separation and purification of recombinant enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.2c07405 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!