Habitat loss is threatening natural communities worldwide. Small and isolated populations suffer from inbreeding and genetic drift, which jeopardize their long-term survival and adaptive capacities. However, the consequences of habitat loss for reciprocal coevolutionary interactions remain poorly studied. In this study, we investigated the effects of decreasing habitat patch size and connectivity associated with habitat loss on molecular signatures of coevolution in the Alcon blue butterfly (Phengaris alcon) and its most limited host, the marsh gentian (Gentiana pneumonanthe). Because reciprocal coevolution is characterized by negative frequency-dependent selection as a particular type of balancing selection, we investigated how signatures of balancing selection vary along a gradient of patch size and connectivity, using single nucleotide polymorphisms (SNPs). We found that signatures of coevolution were unaffected by patch characteristics in the host plants. On the other hand, more pronounced signatures of coevolution were observed in both spatially isolated and in large Alcon populations, together with pronounced spatial variation in SNPs that are putatively involved in coevolution. These findings suggest that habitat loss can facilitate coevolution in large butterfly populations through limiting swamping of locally beneficial alleles by maladaptive ones. We also found that allelic richness (Ar) of the coevolutionary SNPs is decoupled from neutral Ar in the butterfly, indicating that habitat loss has different effects on coevolutionary as compared with neutral processes. We conclude that this specialized coevolutionary system requires particular conservation interventions aiming at generating a spatial mosaic of both connected and of isolated habitat to maintain coevolutionary dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jhered/esac059DOI Listing

Publication Analysis

Top Keywords

habitat loss
24
signatures coevolution
16
loss molecular
8
molecular signatures
8
alcon blue
8
marsh gentian
8
patch size
8
size connectivity
8
balancing selection
8
coevolution
7

Similar Publications

Conservation of bumblebee populations is essential because of their role as pollinators. Declines in bumblebee abundance have been documented in recent decades, mostly attributed to agricultural intensification, landscape simplification and loss of semi-natural grasslands. In this study, we investigated the effects of landscape composition on bumblebee abundance at different spatial scales in 476 semi-natural grassland sites in southern Sweden.

View Article and Find Full Text PDF

Experimental study on hydrophysical properties and slope planting of ecological composite material solidified loess.

J Environ Manage

January 2025

School of Geological Engineering and Geomatics, Chang'an University, Xi'an, 710054, China. Electronic address:

The construction of engineering projects in the Chinese Loess Plateau has resulted in large areas of exposed slopes, increasing the risk of soil erosion. Restoring the slope ecosystem is an effective means to reduce soil erosion, prevent soil and water loss, and maintain slope stability. Ecological slope protection using bio-gum solidified fiber-reinforced loess (GFSL) has been proven to achieve good vegetation restoration effects, but there remains a problem of low vegetation coverage in the early stage of protection.

View Article and Find Full Text PDF

Climate Change Drives Changes in the Size and Composition of Fungal Communities Along the Soil-Seedling Continuum of Schima superba.

Mol Ecol

January 2025

ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China.

Plant microbiomes have a major influence on forest structure and functions, as well as tree fitness and evolution. However, a comprehensive understanding of variations in fungi along the soil-plant continuum, particularly within tree seedlings, under global warming is lacking. Here, we investigated the dynamics of fungal communities across different compartments (including bulk soil and rhizosphere soil) and plant organs (including the endosphere of roots, stems and leaves) of Schima superba seedlings exposed to experimental warming and drought using AccuITS absolute quantitative sequencing.

View Article and Find Full Text PDF

Population Genomics of Japanese Macaques (Macaca fuscata): Insights into Deep Population Divergence and Multiple Merging Histories.

Genome Biol Evol

January 2025

Faculty of Information Science and Technology, Hokkaido University, Kita-14, Nishi-9, Kita-ku, Sapporo, Hokkaido, Japan 060-0814.

The influence of long-term climatic changes such as glacial cycles on the history of living organisms has been a subject of research for decades, but the detailed population dynamics during the environmental fluctuations and their effects on genetic diversity and genetic load are not well understood on a genome-wide scale. The Japanese macaque (Macaca fuscata) is a unique primate adapted to the cold environments of the Japanese archipelago. Despite of the past intensive research for the Japanese macaque population genetics, the genetic background of Japanese macaques at the whole-genome level has been limited to a few individuals, and the comprehensive demographic history and genetic differentiation of Japanese macaques have been underexplored.

View Article and Find Full Text PDF

Changes in the gut microbiota are associated with obesity and may influence weight loss. We are currently implementing a sustained multidisciplinary collaborative weight management (MCWM) approach to weight loss. We report significant improvements in participant health status after 6 months, along with alterations in the structure, interactions, and metabolic functions of the microbiota.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!