SLAMF7 regulates the inflammatory response in macrophages during polymicrobial sepsis.

J Clin Invest

Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.

Published: March 2023

AI Article Synopsis

  • - Researchers discovered that the Ig-like receptor SLAMF7 plays a crucial role in suppressing inflammation during sepsis, which helps prevent multiple organ injuries and improves patient survival.
  • - SLAMF7 is found in higher levels on immune cells in both septic patients and mice, and it works by inhibiting certain inflammatory signaling pathways in macrophages, specifically TLR-dependent MAPK and NF-κB.
  • - The study reveals that SLAMF7 interacts with SHIP1 and TRAF6 to modulate cytokine production and reduce inflammation, which highlights its potential as a therapeutic target for treating sepsis.

Article Abstract

Uncontrolled inflammation occurred in sepsis results in multiple organ injuries and shock, which contributes to the death of patients with sepsis. However, the regulatory mechanisms that restrict excessive inflammation are still elusive. Here, we identified an Ig-like receptor called signaling lymphocyte activation molecular family 7 (SLAMF7) as a key suppressor of inflammation during sepsis. We found that the expression of SLAMF7 on monocytes/macrophages was significantly elevated in patients with sepsis and in septic mice. SLAMF7 attenuated TLR-dependent MAPK and NF-κB signaling activation in macrophages by cooperating with Src homology 2-containing inositol-5'‑phosphatase 1 (SHIP1). Furthermore, SLAMF7 interacted with SHIP1 and TNF receptor-associated factor 6 (TRAF6) to inhibit K63 ubiquitination of TRAF6. In addition, we found that tyrosine phosphorylation sites within the intracellular domain of SLAMF7 and the phosphatase domain of SHIP1 were indispensable for the interaction between SLAMF7, SHIP1, and TRAF6 and SLAMF7-mediated modulation of cytokine production. Finally, we demonstrated that SLAMF7 protected against lethal sepsis and endotoxemia by downregulating macrophage proinflammatory cytokines and suppressing inflammation-induced organ damage. Taken together, our findings reveal a negative regulatory role of SLAMF7 in polymicrobial sepsis, thus providing sights into the treatment of sepsis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10014109PMC
http://dx.doi.org/10.1172/JCI150224DOI Listing

Publication Analysis

Top Keywords

slamf7
9
sepsis
8
polymicrobial sepsis
8
patients sepsis
8
slamf7 regulates
4
regulates inflammatory
4
inflammatory response
4
response macrophages
4
macrophages polymicrobial
4
sepsis uncontrolled
4

Similar Publications

Pharmacological Management of IgG4-Related Disease: From Traditional to Mechanism-Based Targeted Therapies.

Drugs Aging

January 2025

Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.

IgG4-related disease (IgG4-RD) is an immune-mediated disorder characterized by organ enlargement and dysfunction. The formation of tertiary lymphoid tissues (TLTs) in affected organs is crucial for understanding IgG4-RD, as T follicular helper (Tfh) 2 cells within TLTs drive IgG4+B cell differentiation, contributing to mass formation. Key cytokines IL-4 and IL-10, produced by Tfh2 cells, are essential for this process.

View Article and Find Full Text PDF

Application of deep learning models on single-cell RNA sequencing analysis uncovers novel markers of double negative T cells.

Sci Rep

December 2024

Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA.

Double negative T (DNT) cells are a unique subset of CD3 + TCRαβ + T lymphocytes that lack CD4, CD8, or NK1.1 expression and constitute 3-5% of the total T cell population in C57BL/6 mice. They have increasingly gained recognition for their novel roles in the immune system, especially under autoimmune conditions.

View Article and Find Full Text PDF

SLAMF7 defines subsets of human effector CD8 T cells.

Sci Rep

December 2024

Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore.

Long-term control of viral replication relies on the efficient differentiation of memory T cells into effector T cells during secondary immune responses. Recent findings have identified T cell precursors for both memory and exhausted T cells, suggesting the existence of progenitor-like effector T cells. These cells can persist without antigenic challenge but expand and acquire effector functions upon recall immune responses.

View Article and Find Full Text PDF

High expression of cellular self-activated immunosuppressive molecules and extensive infiltration of suppressive immune cells in the tumor microenvironment are the main factors contributing to glioma's resistance to immunotherapy. Nonetheless, technology to modify the expression of glioma cellular self-molecules through gene editing requires further development. This project advances cell therapy strategies to reverse the immunosuppressive microenvironment of glioma (TIME).

View Article and Find Full Text PDF

Background: Skin cutaneous melanoma (SKCM) is a significant oncological challenge due to its aggressive nature and poor treatment outcomes. This study explores the comprehensive effects of radiotherapy (RT) in SKCM, focusing on cell signaling pathways, immune infiltration, immune gene correlations, immunotherapy response, and prognosis.

Methods: Using the Cancer Genome Atlas (TCGA) database, differentially expressed genes (DEGs) in SKCM patients undergoing RT were identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!