This study evaluated the effects of forages (BarS vs. STR) that differ in the uNDF concentration and FI rate on ruminal fermentation, total tract barrier function, reticulo-ruminal motility, and blood metabolites of beef heifers. Six ruminally cannulated Hereford × Simmental heifers (699 ± 69.1 kg BW) were used in a 6 × 6 Latin square (26 d periods) with a 2 × 3 factorial treatment arrangement. However, 1 heifer was removed from the study after period 2 due to health problems unrelated to treatment, resulting in an incomplete 6 × 6 Latin square design. Barley grain-based diets were formulated using BarS or wheat STR to alter uNDF (7.1% vs. 8.5% DM) with FI rates of 5%, 10%, or 15% of DM. There were limited interactions between the forage type and FI. DM intake was not affected (P ≥ 0.10) by forage type or FI. Use of STR vs. BarS increased uNDF intake (P < 0.001). Increasing FI increased (P < 0.001) uNDF intake for those fed 15% forage. Ruminal pH was not affected (P ≥ 0.10) by forage type; however, cattle fed 5% FI had lesser (P = 0.017) mean ruminal pH and maximum pH (P = 0.018) than those fed 10% and 15% of forage. The total SCFA concentration was not affected by forage type (P = 0.84) but cattle fed the 5% FI rate had lesser (P < 0.001) molar proportion of acetate when compared with cattle fed 10% and 15% forage. Increasing the FI rate decreased the molar proportion of propionate (P < 0.001). Feeding STR relative to BarS decreased (P = 0.041) the reticulo-ruminal contraction duration. In contrast, cattle fed the 10% and 15% FI rates had a greater (P = 0.028) contraction frequency with lower (P = 0.048) contraction area than those fed 5% forage. Plasma glucose, serum insulin, and serum amyloid A were not affected by forage type or FI rate (P ≥ 0.10). Cattle fed 15% forage had lesser (P = 0.040) concentration of serum haptoglobin when compared with cattle fed 5% or 10% forage. In conclusion, forage type used to affect the dietary uNDF concentration, and FI rate act independently suggesting that the provision of STR to increase uNDF reduces reticulo-ruminal contraction duration and total tract permeability but may not affect ruminal pH. Increasing the FI increased dietary uNDF, stabilized ruminal pH, stimulated more frequent reticulo-ruminal contractions, and may decrease the permeability of the gastrointestinal tract and systemic inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9994589PMC
http://dx.doi.org/10.1093/jas/skad043DOI Listing

Publication Analysis

Top Keywords

forage type
24
cattle fed
24
10% 15%
16
15% forage
16
fed 10%
16
forage
14
total tract
12
≥ 010
12
fed
9
concentration forage
8

Similar Publications

LbHKT1;1 Negatively Regulates Salt Tolerance of Limonium bicolor by Decreasing Salt Secretion Rate of Salt Glands.

Plant Cell Environ

January 2025

Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, China.

The HKT-type proteins have been extensively studied and have been shown to play important roles in long-distance Na transport, maintaining ion homoeostasis and improving salt tolerance in plants. However, there have been no reports on the types, characteristics and functions of HKT-type proteins in Limonium bicolor, a recretohalophyte species with the typical salt gland structure. In this study, five LbHKT genes were identified in L.

View Article and Find Full Text PDF

Cannabinoid type-1 receptors in CaMKII neurons drive impulsivity in pathological eating behavior.

Mol Metab

January 2025

Leibniz Institute for Resilience Research, 55122 Mainz Germany; Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz Germany. Electronic address:

Overconsumption of palatable food and energy accumulation are evolutionary mechanisms of survival when food is scarce. This innate mechanism becomes detrimental in obesogenic environment promoting obesity and related comorbidities, including mood disorders. The endocannabinoid system favors energy accumulation and regulates reward circuits.

View Article and Find Full Text PDF

Social learning, where animals learn from other individuals, occurs in many diverse species. The influential but debated 'costly information' hypothesis posits that animals will rely more on social information in high-risk contexts, such as under increased predation risk. We examined and compared the effects of perceived predation risk on social learning of foraging sites in female Trinidadian guppies from wild and domestic populations raised in common-garden environments.

View Article and Find Full Text PDF

Social insects form complex societies with division of labour between different female castes. In most species, a single queen heads the colony; in others, several queens share the task of reproduction. These different social organisations are often associated with distinct queen morphologies and life-history strategies and occur in different environments.

View Article and Find Full Text PDF

Soil compaction poses a significant challenge in modern agriculture, as it constrains root development and hinders crop growth. The increasing evidence indicated that various phytohormones collaborate in distinct root zones to regulate root growth in compacted soils. However, the study of root development in maize under such conditions has been relatively limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!