Purpose: To investigate the role and underlying mechanism of GDF11 on diabetic nephropathy (DN)-related mitochondrial dysfunction and apoptosis.
Methods: A DN model of rats was established in this study. Human Kidney-2 (HK-2) cells were cultured under high-glucose (HG) condition with or without recombinant GDF11 (rGDF11). Mitochondrial morphology of HK-2 cells was analyzed by transmission electron microscope and MitoTracker Red CMXRos staining. Mitochondrial membrane potential (MMP) and ROS production were monitored using JC-1 assay kit and MitoSOX staining, respectively. Cell apoptosis was detected by TUNEL or flow cytometry assays.
Results: Herein, we observed that GDF11 was down-regulated in renal cortex and serum of DN rats, which was accompanied by renal mitochondrial morphological abnormalities. In line with the findings in vivo, HK-2 cells exposed to HG presented with mitochondrial morphological alterations and further apoptosis accompanied by GDF11 reduction. In addition, HG promoted a decrease in MMP while an increase in mitochondrial ROS production. Conversely, rGDF11 treatment significantly alleviated these HG-induced mitochondrial defects in HK-2 cells. Meanwhile, HK-2 cell apoptosis induced by HG was simultaneously suppressed by rGDF11. Mechanistically, the decreased levels of p-AKT induced by HG were attenuated after rGDF11 administration. Inhibition of the PI3K/AKT pathway resisted the effects of rGDF11 on the MMP and apoptosis of HK-2 cells. In addition, we identified that GDF11 is a target of miR-32-5p. Up-regulation of miR-32-5p could inhibit the expression of GDF11.
Conclusion: rGDF11 treatment rescued HG-induced HK-2 cell mitochondrial dysfunction and apoptosis, which may be dependent on the activation of the PI3K/AKT pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11255-023-03495-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!