Exploiting cellulose nanocrystals' high aspect ratio and tailorable surface for immunological biosensors has been hindered by the relatively limited research on using commonly available sulfated cellulose nanocrystals (CNCs) for antibody immobilization and by the low hydrolytic stability of dried assemblies produced from sulfated CNCs. Herein, we report a reaction scheme that enables both hydrolytic stability and antibody immobilization through 3-aminopropyl-triethoxysilane and glutaric anhydride chemistry. Immobilization was demonstrated using three model antibodies used in the detection of the cancer biomarkers: alpha-fetoprotein, prostate-specific antigen, and carcinoembryonic antigen. Thermogravimetric analysis coupled with Fourier-transform infrared spectroscopy provided evidence of CNC modification. Quartz crystal microbalance with dissipation monitoring was used to monitor binding during each step of the immobilization scheme as well as binding of the corresponding antigens. The general reaction scheme was tested using both aqueous CNC dispersions and CNC films. Film modification is slightly simpler as it avoids centrifugation and washing steps. However, modifying the dispersed CNCs provides access to their entire surface area and results in a greater capacity for antigen binding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.2c00877 | DOI Listing |
Mikrochim Acta
January 2025
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
Procalcitonin (PCT) is a reliable biomarker for diagnosing and monitoring bacterial infections and sepsis. PCT exhibits good stability both in vivo and in vitro, and its levels drastically increase in response to bacterial infection or inflammatory reactions in the human body, making it a dependable indicator for sepsis diagnosis and monitoring with significant implications for clinical diagnosis and treatment guidance. Currently, immunosensors are widely utilized in PCT detection due to their high sensitivity and low detection limits.
View Article and Find Full Text PDFFoods
January 2025
School of Food and Biological Engineering, Engineering Research Center of Bio-Process of Ministry of Education, Anhui Province Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China.
Due to their lipophilicity and low content, the major sesame oleosin allergens, Ses i 4 and Ses i 5, are challenging to identify using conventional techniques. Then, a novel unlabeled electrochemical immunosensor was developed to detect the potential allergic activity of sesame oleosins. The voltammetric immunosensor was constructed using a composite of gold nanoparticles (AuNPs), polyethyleneimine (PEI), and multi-walled carbon nanotubes (MWCNTs), which was synthesized in a one-pot process and modified onto a glass carbon electrode to enhance the catalytic current of the oxygen reduction reaction.
View Article and Find Full Text PDFTalanta
January 2025
Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia. Electronic address:
Envenomation accidents are usually diagnosed at the hospital through signs and symptoms assessment such as short breath, dizziness and vomiting, numbness, swilling, bruising, or bleeding around the affected site. However, this traditional method provides inaccurate diagnosis given the interface between snakebites and scorpion stings symptoms. Therefore, early determination of bites/stings source would help healthcare professionals select the suitable treatment for patients, thus improving envenomation management.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.
Background: Localized surface plasmon resonance (LSPR) sensor has drawn continuous attention to application of the detection of antibody, protein, virus, and bacteria. However, natural recognition molecules, such as antibody, which possess some properties, including low thermal stability, complicated operation and high price, uncontrollability of length and size and a tendency to accumulate easily on the surface of chip to reduce the sensitive of method. Furthermore, common blocking agents are not suitable for development of novel biosensors.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China. Electronic address:
Background: As global food production continues to surge, the widespread use of herbicides has also increased concurrently, posing challenges like health risks and environmental pollution. Traditional detection methods for pesticide residues, such as diquat (DQ), were hampered by limitations like high expenses, lengthy detection times and complex operations, restricting their practical application in rapid clinical diagnosis.
Results: In light of the pressing necessity for the identification of minute pesticide residues and the intrinsic constraints of small molecule analysis, a novel chromophotometric biosensor targeting small molecules was developed based on bi-epitopes on single antibody to immobilize two DQ-PAL, inhibiting the hybridization of DQ-PAL.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!