Broad-spectrum biocontrol by CHA0 and other fluorescent pseudomonads is achieved through the generation of various secondary metabolites with antibiotic activities against not only other microbes but, also, nematodes and insects present in the rhizosphere. A previous metabolomic study demonstrated that intracellular low-molecular weight effectors, such as guanosine tetraphosphate and γ-aminobutyrate, function as important signals in niche adaptation by strain CHA0 to plant roots. We investigated the role of amino acids in the biocontrol trait of Cab57 towards Pythium damping off and root rot in cucumber. Among the 11 amino acids tested, only glutamate markedly enhanced the efficacy of biocontrol. An RNA-Seq analysis revealed that glutamate upregulated the expression of a chitinase gene cluster (c21370-c21380, in which the c21370 gene was annotated as a gene encoding the chitin-binding protein and the c21380 gene encoded chitinase ) in strain CHA0. Glutamate upregulated the expression of the regulatory small RNA but reduced the production levels of other Gac/Rsm-regulated biocontrol factors, such as 2,4-diacetylphloroglucinol and pyoluteorin. The promoter activity of and chitinase activity were characterized in detail; their activities were up-regulated in response to glutamate and their expression was under the control of GacA. Therefore, glutamate appears to be essential for biocontrol activity in which chitinase production is regulated in response to glutamate. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/MPMI-09-22-0178-R | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!