The existence of AgTe has always been an obstacle for p-type thermoelectric material AgSbTe to improve its thermoelectric performance. In this work, AgSbMgTe samples are synthesized by melting-slow-cooling and then spark plasma sintering (SPS). Through increasing the solubility of AgTe in the AgSbTe matrix by Mg doping, the formation of AgTe is inhibited. Density functional theory calculations confirm more valence bands are involved in electrical transport due to Mg doping. Therefore, the electrical conductivity of AgSbMgTe samples has been greatly improved due to the reduction of AgTe with n-type electrical conductivity. Moreover, the downward trend of ZT, which is caused by the structural transition of AgTe at about 418 K, disappears. Meanwhile, lattice defects form in the AgSbMgTe sample, and Mg doping improves the configurational entropy change, resulting in a decrease in lattice thermal conductivity over the entire temperature range of measurement. Finally, a high ZT value of 1.31 at 523 K is achieved for the AgSbMgTe sample. This study demonstrates that Mg doping can effectively improve AgSbTe thermoelectric performance by inhibiting the formation of the AgTe impurity phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c22930 | DOI Listing |
Chem Sci
January 2025
Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen Guangdong 518060 China
SbTe-based flexible thin films can be utilized in the fabrication of self-powered wearable devices due to their huge potential in thermoelectric performance. Although doping can significantly enhance the power factor value, the process of identifying suitable dopants is typically accompanied by numerous repeating experiments. Herein, we introduce Zn doping into thermally diffused p-type SbTe flexible thin films with a candidate dopant validated using the first-principles calculations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China.
Thermoelectric (TE) performance in materials is often constrained by the strong coupling between carrier and phonon transport, necessitating trade-offs between electrical and thermal properties that limit improvements in the figure of merit (). Herein, a novel strategy is proposed to achieve simultaneous energy filtering and enhanced phonon scattering, effectively optimizing the TE properties of CoSb-based skutterudites. By introducing CuTe nanoprecipitates into the YbCoSb matrix, interfacial barriers are formed, which selectively filter low-energy charge carriers, significantly improving the Seebeck coefficient while maintaining high carrier mobility.
View Article and Find Full Text PDFACS Omega
January 2025
Key Laboratory of High Performance Ship Technology, Wuhan University of Technology, Ministry of Education, Wuhan 430063, China.
Wearable thermoelectric generator (TEG) can collect human body heat and convert it into electrical energy, achieving self-powering of the device and thus becoming a hot research topic at present. By utilization of three-dimensional spiral thin-film thermoelectric structures and passive radiation cooling methods, the heat transfer area can be increased and power generation can be enhanced. In order to study the effect of outdoor radiation cooling on the thermoelectric performance of spiral heating, as well as the TEG performance output under different external environments and circuit loads, this paper proposes a new three-dimensional coupled numerical model of the spiral thermoelectric wristband system with multiple physical fields.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
Nanomagnetism may enable electrical conductivity and Seebeck coefficient to be decoupled and can potentially lead to remarkable enhancements in thermoelectric (TE) performance, however, their physical mechanisms have not been explored. Herein, it is shown that the nanomagnetism from Fe and FeO nanoparticles embedded in BiSbTe/epoxy flexible films can lead to the carriers splitting into spin-up and spin-down conductive branches with different resistances and mobilities due to the exchange interaction between the spin of carriers and the nanomagnetism. The double-resistance conduction of carriers may well explain the decoupling of electrical conductivity and Seebeck coefficient and their simultaneous enhancements in the thermo-electro-magnetic flexible films.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, People's Republic of China. Electronic address:
Recently, the widespread utilization of combustible materials has increased the risks associated with building fires. Early fire-warning systems represent a pivotal strategy in mitigating losses incurred from fire incidents and offer considerable potential for the enhancement of fire safety management. This study focuses on the synthesis of bio-based ionic hydrogels, specifically calcium alginate/polyacrylamide/glycerol/lithium bromide (CPG-L), as a novel fire sensor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!