Conventional hydrogels such as polyacrylamide and polyacrylic acid ones seldom exhibit phosphorescences at ambient conditions, which limit their applications as optical materials. We propose and demonstrate here a facile strategy to afford these hydrogels with room-temperature phosphorescence by polymerization-induced crystallization of dopant molecules that results in segregation and confinement of the gel matrix with carbonyl groups and thus clusterization-induced phosphorescence. As a model system, crown ethers (CEs) are dissolved in an aqueous solution of concentrated acrylamide that greatly increases the solubility of CEs. During the polymerization process, CEs crystallize to form large spherulites in the polyacrylamide hydrogel. The crystallization arises from the drastically reduced solubility of CEs after the conversion of monomers to polymers during the gel synthesis. The resultant composite hydrogel with a water content of 67 wt % exhibits extraordinary phosphorescence behavior yet maintains good stretchability and resilience. We found that the partial gel matrix is squeezed and confined by in situ-formed crystals, leading to carbonyl clusters and thus phosphorescence emission. The composite gel shows green phosphorescence with an emission peak at 512 nm and a lifetime of 342 ms. The afterglow emission is detectable by the naked eye for several seconds. This strategy has good universality, as validated in other hydrogels with different polymeric matrices and dopant molecules. The development of hydrogels with good mechanical and phosphorescent properties should merit the design of multifunctional soft machines with applications in biomedical and engineering fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.2c13264 | DOI Listing |
Membranes (Basel)
December 2024
Institute of Physics, Opole University, Oleska 48, 45-052 Opole, Poland.
This article investigates the influence of dopant molecules on the structural and dynamic properties of lipid bilayers in liposomes, with a focus on the effects of dopant concentration, size, and introduced electric charge. Experimental studies were performed using electron paramagnetic resonance (EPR) spectroscopy with spin probes, complemented by Monte Carlo simulations. Liposomes, formed via lecithin sonication, were doped with compounds of varying concentrations and analyzed using EPR spectroscopy to assess changes in membrane rigidity.
View Article and Find Full Text PDFBiomimetics (Basel)
November 2024
Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, E-14071 Córdoba, Spain.
Biotemplating technique allows the synthesis of catalysts, recreating the sophisticated structure of nature templates. In this work, some biotemplated TiO semiconductors were synthesized using leaves as templates. Then, g-CN was coupled to materials to later incorporate Pt on the surface or as dopant in the structure to evaluate the efficiency of the solids in two photocatalytic applications to valorize biomass: hydrogen production through glycerol photoreforming, and photoacetalization of cinnamaldehyde with 1,2-propanediol.
View Article and Find Full Text PDFMater Horiz
December 2024
Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China.
Despite recent advancements in organic phosphors, the synthesis of monodisperse afterglow microparticles (MPs) suitable for creating photonic crystals remains challenging. The SiO matrix is an attractive host material for activating the long-lived emissions of doped molecules due to several factors, including its cross-linked polymer-like structure, abundance of -OH groups, robustness, and presence of numerous emitter defects. However, the Stöber method struggles to produce monodisperse molecule-doped SiO MPs due to the complexity of the system.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
In this study, we realized a real-time and enzyme-free measurement of lactate in sweat in the same way as an enzyme-based amperometric method. A conductive polymer, which is based on polyaniline (PANI), was strongly coated on a glassy carbon electrode as a poly -aminophenylboronic acid (PANI-PBA) membrane by drop-casting, which is a convenient method, owing to adhesive phytic acid (PA) molecules with negative charges included as a dopant. This polymer membrane had a functional structure with PBA in the PANI main chain, which expectedly induced electrical charges upon diol binding to lactate, owing to the formation of deprotonated boronate esters with negative charges.
View Article and Find Full Text PDFTalanta
December 2024
Applied Analytical Chemistry, University of Duisburg-Essen, Universitatsstr. 5, 45141, Essen, Germany; Teaching and Research Center for Separation, University of Duisburg-Essen, Universitatsstr. 5, 45141, Essen, Germany. Electronic address:
The monitoring of phthalate esters (PAEs) is challenging due to background contamination as well as the low selectivity observed when analyzing them by gas chromatography coupled to mass spectrometry (GC-MS) using electron ionization (EI). In this sense, alternative and soft ionization techniques could help to enhance the performance of the analytical determinations of PAEs in food samples. In this work, the use of a novel and soft ionization technique tube plasma ionization (TPI) has been explored to enhance the selectivity and sensitivity in the determination of PAEs in drinking water samples with GC-MS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!