The application of membrane-based separation processes for propylene/propane (C H /C H ) is extremely promising and attractive as it is poised to reduce the high operation cost of the established low temperature distillation process, but major challenges remain in achieving high gas selectivity/permeability and long-term membrane stability. Herein, a C H facilitated transport membrane using trisilver pyrazolate (Ag pz ) as a carrier filler is reported, which is uniformly dispersed in a polymer of intrinsic microporosity (PIM-1) matrix at the molecular level (≈15 nm), verified by several analytical techniques, including 3D-reconstructed focused ion beam scanning electron microscropy (FIB-SEM) tomography. The π-acidic Ag pz combines preferentially with π-basic C H , which is confirmed by density functional theory calculations showing that the silver ions in Ag pz form a reversible π complex with C H , endowing the membranes with superior C H affinity. The resulting membranes exhibit superior stability, C H /C H selectivity as high as ≈200 and excellent C H permeability of 306 Barrer, surpassing the upper bound selectivity/permeability performance line of polymeric membranes. This work provides a conceptually new approach of using coordinatively unsaturated 0D complexes as fillers in mixed matrix membranes, which can accomplish olefin/alkane separation with high performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10074071PMC
http://dx.doi.org/10.1002/advs.202206858DOI Listing

Publication Analysis

Top Keywords

mixed matrix
8
matrix membranes
8
membranes
5
rational design
4
design mixed
4
membranes modulated
4
modulated trisilver
4
trisilver complex
4
complex efficient
4
efficient propylene/propane
4

Similar Publications

Mitigating matrix effects in oil and gas wastewater analysis: LC-MS/MS method for ethanolamines.

Environ Sci Process Impacts

January 2025

Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.

The high salinity and organic content in oil and gas wastewaters can cause ion suppression during liquid chromatography mass spectrometry (LC/MS) analysis, diminishing the sensitivity and accuracy of measurements in available methods. This suppression is severe for low molecular weight organic compounds such as ethanolamines (, monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), -methyldiethanolamine (MDEA), and ,-ethyldiethanolamine (EDEA)). Here, we deployed solid phase extraction (SPE), mixed-mode LC, triple quadrupole MS with positive electrospray ionization (ESI), and a suite of stable isotope standards (, one per target compound) to correct for ion suppression by salts and organic matter, SPE losses, and instrument variability.

View Article and Find Full Text PDF

Background/purpose: Titanium (Ti) is extensively used in dental and orthopedic implants due to its excellent mechanical properties. However, its smooth and biologically inert surface does not support the ingrowth of new bone, and Ti ions may have adverse biological effects. The purpose is to improve the corrosion resistance of titanium and create a 3D structured coating to enhance osseointegration through a very simple and fast surface treatment.

View Article and Find Full Text PDF

Defective MOFs have been identified as promising candidates for efficient membrane-based separation applications. However, the utilization of defective MOFs in membrane gas separation is still in its infancy due primarily to the inefficient molecular differentiation induced by structural defects. Herein, we report a strategic combination of ionic liquid (IL) and defective UiO-66-NH MOF to ameliorate the CO/N selectivity within the highly permeable PIM-1 polymer.

View Article and Find Full Text PDF

Pooled microarray expression analysis of failing left ventricles reveals extensive cellular-level dysregulation independent of age and sex.

J Mol Cell Cardiol Plus

March 2024

National Coalition of Independent Scholars, 125 Putney Road, Battleboro, VT 05301, United States.

Existing cardiovascular studies tend to suffer from small sample sizes and unaddressed confounders. Re-profiling of 9 microarray datasets revealed significant global gene expression differences between 358 failing and 191 non-failing left ventricles independent of age and sex ( = 5.1e-10).

View Article and Find Full Text PDF

Fish scale gelatin/diatom biosilica composite hemostasis sponge with ultrafast dispersing and in situ gelation for hemorrhage control.

Int J Biol Macromol

January 2025

College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Floor 7, Building 1, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya, Hainan Province, China. Electronic address:

Rapid control of hemorrhage is vital in first-aid and surgery. As representative of emergency hemostatic materials, inorganic porous materials achieve rapid hemostasis through concentrating protein coagulation factors by water adsorption to accelerate the coagulation reaction process, however their efficacy is often limited by the insufficient contact of material with blood and the lack of blood clot strength. Herein, we report an ultrafast dispersing and in situ gelation sponge (SG/DB) based on anchoring interface effect for hemorrhage control using freeze drying method after mixing fish scale gel (SG) and tert-butyl alcohol (TBA) pre-crystallized diatom biosilica (DB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!