A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis, Biological Evaluation and Molecular Docking Study of Some Newer Oxadiazole Derivatives as Anticonvulsant, Antibacterial and Analgesic Agents. | LitMetric

Synthesis, Biological Evaluation and Molecular Docking Study of Some Newer Oxadiazole Derivatives as Anticonvulsant, Antibacterial and Analgesic Agents.

Curr Comput Aided Drug Des

Department of Pharm. Chemistry, School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Shirpur, Distt - Dhule, Maharashtra, 425405, India.

Published: May 2023

Background: The compounds containing heterocyclic cores with O, N and/or S atoms are bioactive and valuable molecules in the field of drug discovery and development. There are several applications in different areas for the molecules having oxadiazole moiety in their structures viz. herbicides and corrosion inhibitors, electron-transport materials, polymers and luminescent materials. Hence, demand for new anticonvulsant, antibacterial and analgesic agents has turned into an imperative assignment in the area of medicinal chemistry to improve therapeutic efficacy as well as safety.

Methods: In the journey of new anticonvulsive, antibacterial and analgesic molecules with better potency, some newer Oxadiazole analogues were attained by a sequence of synthetic steps with the substituted acrylic acids. IR and H-NMR spectral data were used for the structure elucidation of obtained chemical compounds. In this perspective, the anticonvulsant, antibacterial and analgesic activities were evaluated for synthetically obtained newer chemical moieties. Furthermore, a molecular docking study was performed to elucidate the binding modes of synthesized ligands in the active pockets of Cox-1/2 enzymes, DNA Gyrase and GABA inhibitors.

Results: It has been observed that all the synthetic molecules showed good analgesic activity while A1 molecule demonstrated better analgesic activity. In the case of anticonvulsant and antibacterial activity among other ligands, C1 molecule possessed profound anticonvulsant activity whereas B1 molecule showed maximum antibacterial activity and molecular docking study also endorsed the same consequences.

Conclusion: It might be recognized from the present study that prepared compounds are distinctive in lieu of their structure and noticeable biological activity. In the quest for a newer group of anticonvulsant, antibacterial and analgesic molecules, these compounds might be useful for the society.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1573409919666230207103707DOI Listing

Publication Analysis

Top Keywords

anticonvulsant antibacterial
20
antibacterial analgesic
20
molecular docking
12
docking study
12
newer oxadiazole
8
analgesic agents
8
analgesic molecules
8
analgesic activity
8
activity molecule
8
antibacterial activity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!