The purpose of this work is to assess the robustness of treatment plans when spot delivery errors were predicted with a machine learning (ML) model for intensity modulated proton therapy (IMPT). Over 6000 machine log files from delivered IMPT treatment plans were included in this study. From these log files, over 4.1  10 delivered proton spots were used to train the ML model. The presented model was tested and used to predict the spot position as well as the monitor units (MU) per spot, based on the original planning parameters. Two patient plans (one accelerated partial breast irradiation [APBI] and one ependymoma) were recalculated with the predicted spot position/MUs by the ML model and then were re-analyzed for robustness. Plans with ML predicted spots were less robust than the original clinical plans. In the APBI plan, dosimetric changes to the left lung and heart were not clinically relevant. In the ependymoma plan, the hot spot in the brainstem decreased and the hot spot in the cervical cord increased. Despite these differences, after robustness analysis, both ML spot delivery error plans resulted in >95% of the CTV receiving >95% of the prescription dose. The presented workflow has the potential benefit of including realistic spots information for plan quality checks in IMPT. This work demonstrates that in the two example plans, the plans were still robust when accounting for spot delivery errors as predicted by the ML model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161119PMC
http://dx.doi.org/10.1002/acm2.13911DOI Listing

Publication Analysis

Top Keywords

spot delivery
16
spot
9
delivery error
8
intensity modulated
8
modulated proton
8
proton therapy
8
robustness analysis
8
machine learning
8
plans
8
treatment plans
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!