Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Balancing the cardiovascular risk and benefit of anthracycline-based chemotherapy in patients with diffuse large B-cell lymphoma is an important clinical issue. We aimed to evaluate whether the pretreatment coronary artery calcium score (CACS) can stratify the risk of cancer therapy-related cardiac dysfunction (CTRCD) and major adverse cardiovascular events (MACEs) in patients with diffuse large B-cell lymphoma receiving anthracycline-based chemotherapy.
Methods: The patients with diffuse large B-cell lymphoma from 4 hospitals were retrospectively enrolled. The CACS was automatically calculated on nongated chest computed tomography before treatment using artificial intelligence-CACS software and divided into 3 categories (0, 1-100, and >100). The associations between the CACS and CTRCD and between the CACS and MACEs were assessed by logistic regression and Fine-Gray competing-risk regression model. Nelson-Aalen cumulative risk curve was performed to assess the cumulative incidence of MACEs.
Results: A total of 1468 patients (785 men and 683 women; 100% Asian) were enrolled, and 362 and 185 patients developed CTRCD and MACEs, respectively. Compared with a CACS of 0 (n=826), there was stepwise higher odds of CTRCD with a CACS between 1 and 100 (n=356; odds ratio, 2.587) and a CACS >100 (n=286; odds ratio, 5.239). The CACS was associated with MACEs (1-100 versus 0: subdistribution hazard ratio 3.726; >100 versus 0: subdistribution hazard ratio 7.858; all <0.001). Competing risk-adjusted MACEs rates for patients with a CACS of 0, 1 to 100, and >100 were 1.21%, 8.43%, and 11.19%, respectively, at 3 years, and 3.27%, 16.01%, 31.12%, respectively, at 5 years.
Conclusions: The automatic CACS derived from chest computed tomography before treatment was helpful to identify high-risk patients of CTRCD and MACE and guide clinicians to implement cardiovascular protection strategies in patients with diffuse large B-cell lymphoma who received anthracycline-based chemotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/CIRCIMAGING.122.014829 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!